43 research outputs found

    Remembering Forward: Neural Correlates of Memory and Prediction in Human Motor Adaptation

    Get PDF
    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions – including prefrontal, parietal and hippocampal cortices – exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures

    Microfluidic Platform for the Elastic Characterization of Mouse Submandibular Glands by Atomic Force Microscopy

    Get PDF
    The ability to characterize the microscale mechanical properties of biological materials has the potential for great utility in the field of tissue engineering. The development and morphogenesis of mammalian tissues are known to be guided in part by mechanical stimuli received from the local environment, and tissues frequently develop to match the physical characteristics (i.e., elasticity) of their environment. Quantification of these material properties at the microscale may provide valuable information to guide researchers. Presented here is a microfluidic platform for the non-destructive ex vivo microscale mechanical characterization of mammalian tissue samples by atomic force microscopy (AFM). The device was designed to physically hold a tissue sample in a dynamically controllable fluid environment while allowing access by an AFM probe operating in force spectroscopy mode to perform mechanical testing. Results of measurements performed on mouse submandibular gland samples demonstrate the ability of the analysis platform to quantify sample elasticity at the microscale, and observe chemically-induced changes in elasticity

    Neural and Electromyographic Correlates of Wrist Posture Control

    Get PDF
    In identical experiments in and out of a MR scanner, we recorded functional magnetic resonance imaging and electromyographic correlates of wrist stabilization against constant and time-varying mechanical perturbations. Positioning errors were greatest while stabilizing random torques. Wrist muscle activity lagged changes in joint angular velocity at latencies suggesting trans-cortical reflex action. Drift in stabilized hand positions gave rise to frequent, accurately directed, corrective movements, suggesting that the brain maintains separate representations of desired wrist angle for feedback control of posture and the generation of discrete corrections. Two patterns of neural activity were evident in the blood-oxygenation-level-dependent (BOLD) time series obtained during stabilization. A cerebello-thalamo-cortical network showed significant activity whenever position errors were present. Here, changes in activation correlated with moment-by-moment changes in position errors (not force), implicating this network in the feedback control of hand position. A second network, showing elevated activity during stabilization whether errors were present or not, included prefrontal cortex, rostral dorsal premotor and supplementary motor area cortices, and inferior aspects of parietal cortex. BOLD activation in some of these regions correlated with positioning errors integrated over a longer time-frame consistent with optimization of feedback performance via adjustment of the behavioral goal (feedback setpoint) and the planning and execution of internally generated motor actions. The finding that nonoverlapping networks demonstrate differential sensitivity to kinematic performance errors over different time scales supports the hypothesis that in stabilizing the hand, the brain recruits distinct neural systems for feedback control of limb position and for evaluation/adjustment of controller parameters in response to persistent errors

    Curricular Treatments of Length Measurement in the United States: Do They Address Known Learning Challenges?

    Get PDF
    Extensive research has shown that elementary students struggle to learn the basic principles of length measurement. However, where patterns of errors have been documented, the origins of students’ difficulties have not been identified. This study investigated the hypothesis that written elementary mathematics curricula contribute to the problem of learning length measurement. We analyzed all instances of length measurement in three mathematics curricula (grades K–3) and found a shared focus on procedures. Attention to conceptual principles was limited overall and particularly for central ideas; conceptual principles were often presented after students were asked to use procedures that depended on them; and students often did not have direct access to conceptual principles. We also report five groupings of procedures that appeared sequentially in all three curricula, the conceptual principles that underlie those procedures, and the conventional knowledge that receives substantial attention by grade 3

    Inhibition of Biofilm Formation, Quorum Sensing and Infection in Pseudomonas aeruginosa by Natural Products-Inspired Organosulfur Compounds

    Get PDF
    Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Structure of the human Îș-opioid receptor in complex with JDTic

    Get PDF
    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and—in the case of Îș-opioid receptor (Îș-OR)—dysphoria and psychotomimesis. Here we report the crystal structure of the human Îș-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 Å resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human Îș-OR. Modelling of other important Îș-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5â€Č-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure–activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for Îș-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human Îș-OR

    Microfluidic-assisted atomic force microscopy for the mechanical characterization of soft biological materials

    No full text
    Viable methods for bacterial biofilm remediation require a fundamental understanding of biofilm mechanical properties and their dependence on dynamic environmental conditions. Mechanical test data, quantifying elasticity or adhesion, may be used to perform physical modeling of biofilm behavior, thus enabling the development of novel remediation strategies. To achieve real-time, dynamic measurements of these properties, a novel analysis platform consisting of a microfluidic flowcell device has been designed and fabricated for in situ analysis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The flowcell consists of microfluidic channels for biofilm establishment that are then converted into an open architecture, laminar flow channel for AFM measurement in a liquid environment. Computational fluid dynamics (CFD) was used to profile fluid conditions within the device during biofilm establishment. The validity of the AFM nanoindentation measurement mechanism was confirmed in the context of the system through the elastic characterization of several non-living reference materials. Force-mode AFM was used to measure the elastic properties of mature Pseudomonas aeruginosa PAO1 biofilms and observe a dynamic response to a chemical antagonist. Elastic moduli ranging from 0.58 to 2.61 kPa were determined for the mature biofilm, which fall within the range of moduli previously reported by optical, rheometric, and microindentation techniques. A modified version of the flowcell was employed to perform similar elastic characterization of mouse submandibular glands (SMGs), demonstrating the adaptability of the system to perform ex situ analyses of a broader set of biological materials. These results demonstrate the validity of the microfluidic flowcell system as an effective platform for future investigations of the mechanical and morphological response of biofilms and other soft biomaterials to dynamic environmental conditions

    Exploring US textbooks’ treatment of the estimation of linear measurements

    Get PDF
    Learning to estimate a linear measurement is critical in becoming a successful measurer. Research indicates that the teaching of the estimation of linear measurement is quite open and that instruction does not make explicit to students how to carry out estimation work. Because written curriculum has been identified as one of the main sources affecting teachers’ instruction and students’ learning, this study examined how estimation of linear measurement tasks were presented to students in three US elementary mathematics curricula to see how much and in what ways these tasks were presented in an open manner. The principal result was that the length estimation tasks were frequently not explicit about which attribute of the object to measure and the requested level of precision of the estimate. Length estimation tasks were also left more open than other measurement tasks like measuring length with rulers
    corecore