7 research outputs found

    Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome.

    Get PDF
    BackgroundThe choice of antiplatelet therapy after acute coronary syndrome (ACS) is complicated: Ticagrelor and prasugrel are novel alternatives to clopidogrel, patients with some genotypes may not respond to clopidogrel, and low-cost generic formulations of clopidogrel are available.ObjectiveTo determine the most cost-effective strategy for dual antiplatelet therapy after percutaneous coronary intervention for ACS.DesignDecision-analytic model.Data sourcesPublished literature, Medicare claims, and life tables.Target populationPatients having percutaneous coronary intervention for ACS.Time horizonLifetime.PerspectiveSocietal.InterventionFive strategies were examined: generic clopidogrel, prasugrel, ticagrelor, and genotyping for polymorphisms of CYP2C19 with carriers of loss-of-function alleles receiving either ticagrelor (genotyping with ticagrelor) or prasugrel (genotyping with prasugrel) and noncarriers receiving clopidogrel.Outcome measuresDirect medical costs, quality-adjusted life years(QALYs), and incremental cost-effectiveness ratios (ICERs).Results of base-case analysisThe clopidogrel strategy produced179301incostsand9.428QALYs.Genotypingwithprasugrelwassuperiortoprasugrelalone,withanICERof179 301 in costs and 9.428 QALYs. Genotyping with prasugrel was superior to prasugrel alone, with an ICER of 35 800 per QALY relative to clopidogrel. Genotyping with ticagrelor was more effective than genotyping with prasugrel (30200perQALYrelativetoclopidogrel).Ticagrelorwasthemosteffectivestrategy(30 200 per QALY relative to clopidogrel). Ticagrelor was the most effective strategy(52 600 per QALY relative to genotyping with ticagrelor).Results of sensitivity analysisStronger associations between genotype and thrombotic outcomes rendered ticagrelor substantially less cost-effective ($104 800 per QALY). Genotyping with prasugrel was the preferred therapy among patients who could not tolerate ticagrelor.LimitationNo randomized trials have directly compared genotyping strategies or prasugrel with ticagrelor.ConclusionGenotype-guided personalization may improve the cost-effectiveness of prasugrel and ticagrelor after percutaneous coronary intervention for ACS, but ticagrelor for all patients may bean economically reasonable alternative in some settings

    Circulating Tumor DNA Monitoring on Chemo-immunotherapy for Risk Stratification in Advanced Non-Small Cell Lung Cancer

    Get PDF
    PURPOSE: Chemoimmunotherapy (chemoIO) is a prevalent first-line treatment for advanced driver-negative non-small cell lung cancer (NSCLC), with maintenance therapy given after induction. However, there is significant clinical variability in the duration, dosing, and timing of maintenance therapy after induction chemoIO. We used circulating tumor DNA (ctDNA) monitoring to inform outcomes in patients with advanced NSCLC receiving chemoIO. EXPERIMENTAL DESIGN: This retrospective study included 221 patients from a phase III trial of atezolizumab+carboplatin+nab-paclitaxel versus carboplatin+nab-paclitaxel in squamous NSCLC (IMpower131). ctDNA monitoring used the FoundationOne Tracker involving comprehensive genomic profiling of pretreatment tumor tissue, variant selection using an algorithm to exclude nontumor variants, and multiplex PCR of up to 16 variants to detect and quantify ctDNA. RESULTS: ctDNA was detected (ctDNA+) in 96% of pretreatment samples (median, 93 mean tumor molecules/mL), and similar ctDNA dynamics were noted across treatment arms during chemoIO. ctDNA decrease from baseline to C4D1 was associated with improved outcomes across multiple cutoffs for patients treated with chemoIO. When including patients with missing plasma or ctDNA- at baseline, patients with ctDNA- at C4D1 (clearance), had more favorable progression-free survival (median 8.8 vs. 3.5 months; HR, 0.32;0.20-0.52) and OS (median not reached vs. 8.9 months; HR, 0.22; 0.12-0.39) from C4D1 than ctDNA+ patients. CONCLUSIONS: ctDNA monitoring during induction chemoIO can inform treatment outcomes in patients with advanced NSCLC. Importantly, monitoring remains feasible and informative for patients missing baseline ctDNA. ctDNA testing during induction chemoIO identifies patients at higher risk for disease progression and may inform patient selection for novel personalized maintenance or second-line treatment strategies

    Optimizing Detection of Kidney Transplant Injury by Assessment of Donor-Derived Cell-Free DNA via Massively Multiplex PCR

    Get PDF
    Standard noninvasive methods for detecting renal allograft rejection and injury have poor sensitivity and specificity. Plasma donor-derived cell-free DNA (dd-cfDNA) has been reported to accurately detect allograft rejection and injury in transplant recipients and shown to discriminate rejection from stable organ function in kidney transplant recipients. This study used a novel single nucleotide polymorphism (SNP)-based massively multiplexed PCR (mmPCR) methodology to measure dd-cfDNA in various types of renal transplant recipients for the detection of allograft rejection/injury without prior knowledge of donor genotypes. A total of 300 plasma samples (217 biopsy-matched: 38 with active rejection (AR), 72 borderline rejection (BL), 82 with stable allografts (STA), and 25 with other injury (OI)) were collected from 193 unique renal transplant patients; dd- cfDNA was processed by mmPCR targeting 13,392 SNPs. Median dd-cfDNA was significantly higher in samples with biopsy-proven AR (2.3%) versus BL (0.6%), OI (0.7%), and STA (0.4%) (p < 0.0001 all comparisons). The SNP-based dd-cfDNA assay discriminated active from non-rejection status with an area under the curve (AUC) of 0.87, 88.7% sensitivity (95% CI, 77.7–99.8%) and 72.6% specificity (95% CI, 65.4–79.8%) at a prespecified cutoff (>1% dd-cfDNA). Of 13 patients with AR findings at a routine protocol biopsy six-months post transplantation, 12 (92%) were detected positive by dd-cfDNA. This SNP-based dd-cfDNA assay detected allograft rejection with superior performance compared with the current standard of care. These data support the feasibility of using this assay to detect disease prior to renal failure and optimize patient management in the case of allograft injury

    Detection of Molecular Residual Disease Using Personalized Circulating Tumor DNA Assay in Patients With Colorectal Cancer Undergoing Resection of Metastases

    Full text link
    More than 50% of patients with stage IV colorectal cancer (metastatic colorectal cancer [mCRC]) relapse postresection. The efficacy of postoperative systemic treatment is limited in this setting. Thus, these patients would greatly benefit from the use of a reliable prognostic biomarker, such as circulating tumor DNA (ctDNA) to identify minimal or molecular residual disease (MRD)
    corecore