2 research outputs found

    Experimental Study of a Lab Scale Hybrid Fixed Bed Gasifier

    Get PDF
    This research article published by Science Publishing Group, 2020Thermo-chemical conversion technologies (incineration, gasification and pyrolysis) have emerged as potential technologies for municipal solid waste management (MSWM). This is happening due to the increase of the need for clean and sustainable energy as a result of fossil fuel depletion. The increase in municipal solid waste (MSW) generation as well as land scarcity for MSW disposal is another reason in raising the potential for thermal technology. Incineration has been the most common thermo-chemical technology for solid waste disposal. However, due to environmental concern, gasification technology is currently becoming more preferable since it is environmental friendly for MSW disposal as well as energy recovery. The aim of this study is to analyze the flue gases obtained from the hybrid fixed bed gasifier during gasification of MSW. The fire was initiated by wood charcoal and six kilograms of MSW was fed in the gasifier. The combustion was supported by the air supplied by electric blower. The flue gas analyzer, TESTO 327-1 was used to analyze the concentration of CO, CO2 and O2. Results show that after 150 minutes of the gasification process, O2 concentration increased by 17.2% while CO and CO2 decreased by 0.0% and 3.77% respectively. The experimental results show that, during gasification process the O2 concentration was increasing with time while CO and CO2 concentration decreased

    Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus

    Get PDF
    This research article published by Taylor & Francis Online, 2020Thermochemical conversion technologies (incineration, gasification, and pyrolysis) have emerged as potential technologies for municipal solid waste management. Incineration is the most common thermo-chemical technology widely used in developing countries; however, the process pollutes the environment. Therefore, this study suggests a novel hybrid fixed bed gasifier for gasification of municipal solid waste (MSW). The gasifier model was developed using the Advanced System for Process Engineering Plus (ASPEN Plus) software to accommodate the four gasification stage (drying, pyrolysis, combustion, and gasification). The aim of developing a novel hybrid fixed bed gasifier is to combine the advantages of downdraft and cross-flow gasifiers in one system and minimize its disadvantages. This combination has revealed the way to a gasifier design that accommodates feedstock with high moisture content (β‰ˆ 60%) while maintaining or improving syngas output composition. The analysis of operating parameters such as temperature and equivalence ratio (ER) was also investigated. The results showed that the moisture content (MC) was reduced from 59.8 wt% to 6.8 wt%. The syngas output was highly affected by the changes in temperature as well as ER. High temperature increases H2and CO output composition. The behavior was different for the case of ER where it was observed that H2 and CO decreases while CO2 andH2Oincreases between ER = 0.1 to 0.4 and then starts decreasing gradually. In general, the developed hybrid fixed bed gasifier exhibited an increase inH2 and CO in the producer gas. At this situation, the carbon conversion efficiency of 62.35% and a gasifier conversion efficiency of 54.5% were realized. This suggests the suitability of hybri
    corecore