29 research outputs found

    In vivo magnetic resonance imaging of glucose - initial experience

    Get PDF
    A new noninvasive, nonradioactive approach for glucose imaging using spin hyperpolarization technology and stable isotope labeling is presented. A glucose analog labeled with 13C at all six positions increased the overall hyperpolarized imaging signal; deuteration at all seven directly bonded proton positions prolonged the spin-lattice relaxation time. High-bandwidth 13C imaging overcame the large glucose carbon chemical shift dispersion. Hyperpolarized glucose images in the live rat showed time-dependent organ distribution patterns. At 8s after the start of bolus injection, the inferior vena cava was demonstrated at angiographic quality. Distribution of hyperpolarized glucose in the kidneys, vasculature, and heart was demonstrated at 12 and 20s. The heart-to-vasculature intensity ratio at 20s suggests myocardial uptake. Cancer imaging, currently performed with 18F-deoxyglucose positron emission tomography (FDG-PET), warrants further investigation, and glucose imaging could be useful in a vast range of clinical conditions and research fields where the radiation associated with the FDG-PET examination limits its use. © 2012 John Wiley & Sons, Ltd

    Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia

    Get PDF
    Myelination is a complex, developmentally regulated process whereby myelin proteins and lipids are coordinately expressed by myelinating glial cells. Homozygosity mapping in nine patients with childhood onset spasticity, dystonia, cognitive dysfunction, and periventricular white matter disease revealed inactivating mutations in the FA2H gene. FA2H encodes the enzyme fatty acid 2-hydroxylase that catalyzes the 2-hydroxylation of myelin galactolipids, galactosylceramide, and its sulfated form, sulfatide. To our knowledge, this is the first identified deficiency of a lipid component of myelin and the clinical phenotype underscores the importance of the 2-hydroxylation of galactolipids for myelin maturation. In patients with autosomal-recessive unclassified leukodystrophy or complex spastic paraparesis, sequence analysis of the FA2H gene is warranted

    CT of the Ear in Pendred Syndrome

    No full text

    Atlas Guided Identification . . .

    No full text
    This study presents a novel automatic approach for the identification of anatomical brain structures in magnetic resonance images (MRI). The method combines a fast multiscale multi-channel three dimensional (3D) segmentation algorithm providing a rich feature vocabulary together with a support vector machine (SVM) based classifier. The segmentation produces a full hierarchy of segments, expressed by an irregular pyramid with only linear time complexity. The pyramid provides a rich, adaptive representation of the image, enabling detection of various anatomical structures at different scales. A key aspect of the approach is the thorough set of multiscale measures employed throughout the segmentation process which are also provided at its end for clinical analysis. These features include in particular the prior probability knowledge of anatomic structures due to the use of an MRI probabilistic atlas. An SVM classifier is trained based on this set of features to identify the brain structures. We validated the approach using a gold standard real brain MRI data set. Comparison of the results with existing algorithms displays the promise of our approach
    corecore