49 research outputs found

    Sequential Relational Decomposition

    Get PDF
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding a human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably

    Field Arithmetic

    No full text
    Explores Diophantine fields through their absolute Galois groups. This work features the techniques from algebraic geometry, number theory, and profinite groups. It helps graduate students to learn the generalizations of finite field ideas

    Field arithmetic

    No full text

    Diamonds in Torsion of Abelian Varieties

    No full text

    Sequential Relational Decomposition

    No full text
    The concept of decomposition in computer science and engineering is considered a fundamental component of computational thinking and is prevalent in design of algorithms, software construction, hardware design, and more. We propose a simple and natural formalization of sequential decomposition, in which a task is decomposed into two sequential sub-tasks, with the first sub-task to be executed out before the second sub-task is executed. These tasks are specified by means of input/output relations. We define and study decomposition problems, which is to decide whether a given specification can be sequentially decomposed. Our main result is that decomposition itself is a difficult computational problem. More specifically, we study decomposition problems in three settings: where the input task is specified explicitly, by means of Boolean circuits, and by means of automatic relations. We show that in the first setting decomposition is NP-complete, in the second setting it is NEXPTIME-complete, and in the third setting there is evidence to suggest that it is undecidable. Our results indicate that the intuitive idea of decomposition as a system-design approach requires further investigation. In particular, we show that adding human to the loop by asking for a decomposition hint lowers the complexity of decomposition problems considerably

    This Time the Robot Settles for a Cost: A Quantitative Approach to Temporal Logic Planning with Partial Satisfaction

    No full text
    The specification of complex motion goals through temporal logics is increasingly favored in robotics to narrow the gap between task and motion planning. A major limiting factor of such logics, however, is their Boolean satisfaction condition. To relax this limitation, we introduce a method for quantifying the satisfaction of co-safe linear temporal logic specifications, and propose a planner that uses this method to synthesize robot trajectories with the optimal satisfaction value. The method assigns costs to violations of specifications from user-defined proposition costs. These violation costs define a distance to satisfaction and can be computed algorithmically using a weighted automaton. The planner utilizes this automaton and an abstraction of the robotic system to construct a product graph that captures all possible robot trajectories and their distances to satisfaction. Then, a plan with the minimum distance to satisfaction is generated by employing this graph as the high-level planner in a synergistic planning framework. The efficacy of the method is illustrated on a robot with unsatisfiable specifications in an office environment
    corecore