14 research outputs found

    Flower proteome: changes in protein spectrum during the advanced stages of rose petal development

    Full text link
    Flowering is a unique and highly programmed process, but hardly anything is known about the developmentally regulated proteome changes in petals. Here, we employed proteomic technologies to study petal development in rose ( Rosa hybrida ). Using two-dimensional polyacrylamide gel electrophoresis, we generated stage-specific (closed bud, mature flower and flower at anthesis) petal protein maps with ca. 1,000 unique protein spots. Expression analyses of all resolved protein spots revealed that almost 30% of them were stage-specific, with ca. 90 protein spots for each stage. Most of the proteins exhibited differential expression during petal development, whereas only ca. 6% were constitutively expressed. Eighty-two of the resolved proteins were identified by mass spectrometry and annotated. Classification of the annotated proteins into functional groups revealed energy, cell rescue, unknown function (including novel sequences) and metabolism to be the largest classes, together comprising ca. 90% of all identified proteins. Interestingly, a large number of stress-related proteins were identified in developing petals. Analyses of the expression patterns of annotated proteins and their corresponding RNAs confirmed the importance of proteome characterization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47485/1/425_2005_Article_1512.pd

    Photonic Beamformer Receiver With Multiple Beam Capabilities

    No full text

    Volatile Ester Formation in Roses. Identification of an Acetyl-Coenzyme A. Geraniol/Citronellol Acetyltransferase in Developing Rose Petals

    No full text
    The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. ā€œFragrant Cloud.ā€ Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed in Escherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol and cis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. The RhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak

    Integrated simulation of activity-based demand and multi-modal dynamic supply for energy assessment

    No full text
    The development of a large scale agent-based simulation model for the Greater Boston Area is presented, closing the gap between state-of-the art integrated demand-supply modeling techniques (SimMobility) with advanced energy estimation models (TripEnergy) and shedding light on its practical application to large urban areas. This paper describes the technical details of its three key components (activity-based demand, multi-modal dynamic supply, and trajectory-based energy models), the used data, the model estimation, integration and calibration processes. The proposed model can simulate any day with and without congestion in order to capture changes in energy use across all dimensions of a mobility system, namely temporal, spatial, modal or functional. For an average 24h in the Greater Boston Area the simulated travel of 4.5-million people resulted in 15-million trips and a total vehicle energy consumption of 548 thousand equivalent gallons of gasoline. Our proposed platform allows for the comprehensive and consistent assessment of energy related policies, technologies and services affecting traveler behavior, the transportation system's and vehicle energy performances

    Rose Scent: Genomics Approach to Discovering Novel Floral Fragranceā€“Related Genes

    No full text
    For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of āˆ¼2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolismā€“related genes whose expression coincides with scent production, led to the discovery of several novel flower scentā€“related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants
    corecore