54 research outputs found
Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection
Possibility of asymmetric square convection is investigated numerically using
a few mode Lorenz-like model for thermal convection in Boussinesq fluids
confined between two stress free and conducting flat boundaries. For relatively
large value of Rayleigh number, the stationary rolls become unstable and
asymmetric squares appear as standing waves at the onset of secondary
instability. Asymmetric squares, two dimensional rolls and again asymmetric
squares with their corners shifted by half a wavelength form a stable limit
cycle.Comment: 8 pages, 7 figure
IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling
Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3-/-×Irf7-/- double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3-/-×Irf5-/-×Irf7-/- triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar-/-). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar-/- mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs-/- mDC. The relative equivalence of TKO and Mavs-/- responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5
Microflares and the Statistics of X-ray Flares
This review surveys the statistics of solar X-ray flares, emphasising the new
views that RHESSI has given us of the weaker events (the microflares). The new
data reveal that these microflares strongly resemble more energetic events in
most respects; they occur solely within active regions and exhibit
high-temperature/nonthermal emissions in approximately the same proportion as
major events. We discuss the distributions of flare parameters (e.g., peak
flux) and how these parameters correlate, for instance via the Neupert effect.
We also highlight the systematic biases involved in intercomparing data
representing many decades of event magnitude. The intermittency of the
flare/microflare occurrence, both in space and in time, argues that these
discrete events do not explain general coronal heating, either in active
regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
- …