167 research outputs found
Development of a Fan for Future Space Suit Applications
NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed
Behavior change interventions: the potential of ontologies for advancing science and practice
A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science
Lunar Meteoroid Impact Observations and the Flux of Kilogram-sized Meteoroids
Lunar impact monitoring provides useful information about the flux of meteoroids in the tens of grams to kilograms size range. The large collecting area of the night side of the lunar disk, approximately 3.4x10(exp 6) sq km in our camera field-of-view, provides statistically significant counts of the meteoroids. Nearly 200 lunar impacts have been observed by our program in roughly 3.5 years. Photometric calibration of the flashes along with the luminous efficiency (determined using meteor showers1,2,3) and assumed velocities provide their sizes. The asymmetry in the flux on the evening and morning hemispheres of the Moon is compared with sporadic and shower sources to determine their most likely origin. The asymmetry between the two hemispheres seen in Figure 1 is due to the impact rate and not to observational bias. Comparison with other measurements of the large meteoroid fluxes is consistent with these measurements as shown in Figure 2. The flux of meteoroids in this size range has important implications for the near-Earth object population and for impact risk for lunar spacecraf
Who Listens to Our Advice? A Secondary Analysis of Data From a Clinical Trial Testing an Intervention Designed to Decrease Delay in Seeking Treatment for Acute Coronary Syndrome
Objective Prolonged prehospital delay in persons experiencing acute coronary syndrome (ACS) remains a problem. Understanding which patients respond best to particular interventions designed to decrease delay time would provide mechanistic insights into the process by which interventions work. Methods In the PROMOTION trial, 3522 at-risk patients were enrolled from 5 sites in the United States (56.4%), Australia and New Zealand; 490 (N = 272 intervention, N = 218 control) had an acute event within 2 years. Focusing on these 490, we (1) identified predictors of a rapid response to symptoms, (2) identified intervention group subjects with a change in these predictors over 3 months of follow-up, and (3) compared intervention group participants with and without the favorable response pattern. Hypothesized predictors of rapid response were increased perceived control and decreased anxiety. Knowledge, attitudes, and beliefs were hypothesized to differ between responders and non-responders. Results Contrary to hypothesis, responders had low anxiety and low perceived control. Only 73 (26.8%) subjects showed this pattern 3 months following the intervention. No differences in ACS knowledge, attitudes, or beliefs were found. Conclusion The results of this study challenge existing beliefs. Practice implications New intervention approaches that focus on a realistic decrease in anxiety and perceived control are needed
Lunar Meteoroid Impact Observations and the Flux of Kilogram-Size Meteoroids
Meteor showers dominate the environment in this size range and explain the evening/morning flux asymmetry of 1.5:1. With sufficient numbers of impacts, this technique can help determine the population index for some showers. Measured flux of meteoroids in the 100g to kilograms range is consistent with other observations. We have a fruitful observing program underway which has significantly increased the number of lunar impacts observed. Over 200 impacts have been recorded in about 4 years. This analysis reports on the 115 impacts taken under photometric conditions during the first 3 full years of operation. We plan to continue for the foreseeable future as follows: 1) Run detailed model to try explain the concentration near the trailing limb; 2) Build up statistics to better understand the meteor shower environment; 3) Provide support for robotic seismometers and dust missions; and 4) Deploy near-infrared and visible cameras with dichroic beamsplitter to 0.5m telescope in New Mexico
Flux of Kilogram-Sized Meteoroids from Lunar Impact Monitoring
Routine lunar impact monitoring has harvested over 110 impacts in 2 years of observations using 0.25, 0.36 and 0.5 m telescopes and low-light-level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy. In order to determine the limiting mass for these observations, models of the sporadic meteoroid environment were used to determine the velocity distribution and new measurements of luminous efficiency were made at the Ames Vertical Gun Range. The flux of meteoroids in this size range has implications for Near Earth Object populations as well as for estimating impact ejecta risk for future lunar missions
Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep
siRNAs comprise a class of drugs that can be programmed to silence any target gene. Chemical engineering efforts resulted in development of divalent siRNAs (di-siRNAs), which support robust and long-term efficacy in rodent and nonhuman primate brains upon direct cerebrospinal fluid (CSF) administration. Oligonucleotide distribution in the CNS is nonuniform, limiting clinical applications. The contribution of CSF infusion placement and dosing regimen on relative accumulation, specifically in the context of large animals, is not well characterized. To our knowledge, we report the first systemic, comparative study investigating the effects of 3 routes of administration - intrastriatal (i.s.), i.c.v., and intrathecal catheter to the cisterna magna (ITC) - and 2 dosing regimens - single and repetitive via an implanted reservoir device - on di-siRNA distribution and accumulation in the CNS of Dorset sheep. CSF injections (i.c.v. and ITC) resulted in similar distribution and accumulation across brain regions. Repeated dosing increased homogeneity, with greater relative deep brain accumulation. Conversely, i.s. administration supported region-specific delivery. These results suggest that dosing regimen, not CSF infusion placement, may equalize siRNA accumulation and efficacy throughout the brain. These findings inform the planning and execution of preclinical and clinical studies using siRNA therapeutics in the CNS
Are caregiving responsibilities associated with non-attendance at breast screening?
<p>Abstract</p> <p>Background</p> <p>Previous research showed that deprived individuals are less likely to attend breast screening and those providing intense amounts of informal care tend to be more deprived than non-caregivers. The aim of this study was to examine the relationship between informal caregiving and uptake of breast screening and to determine if socio-economic gradients in screening attendance were explained by caregiving responsibilities.</p> <p>Methods</p> <p>A database of breast screening histories was linked to the Northern Ireland Longitudinal Study, which links information from census, vital events and health registration datasets. The cohort included women aged 47 - 64 at the time of the census eligible for breast screening in a three-year follow-up period. Cohort attributes were recorded at the Census. Multivariate logistic regression was used to examine the relationship between informal caregiving and uptake of screening using STATA version 10.</p> <p>Results</p> <p>37,211 women were invited for breast screening of whom 27,909 (75%) attended; 23.9% of the cohort were caregivers. Caregivers providing <20 hours of care/week were more affluent, while those providing >50 hours/week were more deprived than non-caregivers. Deprived women were significantly less likely to attend breast screening; however, this was not explained by caregiving responsibilities as caregivers were as likely as non-caregivers to attend (Odds Ratio 0.97; 95% confidence intervals 0.88, 1.06).</p> <p>Conclusions</p> <p>While those providing the most significant amounts of care tended to be more deprived, caregiving responsibilities themselves did not explain the known socio-economic gradients in breast screening attendance. More work is required to identify why more deprived women are less likely to attend breast screening.</p
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …