64 research outputs found
Monte Carlo Simulation of Magnetization Reversal in Fe Sesquilayers on W(110)
Iron sesquilayers grown at room temperature on W(110) exhibit a pronounced
coercivity maximum near a coverage of 1.5 atomic monolayers. On lattices which
faithfully reproduce the morphology of the real films, a kinetic Ising model is
utilized to simulate the domain-wall motion. Simulations reveal that the
dynamics is dominated by the second-layer islands, which act as pinning
centers. The simulated dependencies of the coercivity on the film coverage, as
well as on the temperature and the frequency of the applied field, are very
similar to those measured in experiments. Unlike previous micromagnetic models,
the presented approach provides insight into the dynamics of the domain-wall
motion and clearly reveals the role of thermal fluctuations.Comment: Final version to appear in Phys. Rev. B. References to related works
added. 7 pages, 5 figures, RevTex, mpeg simulations available at
http://www.scri.fsu.edu/~rikvol
Schwinger boson theory of anisotropic ferromagnetic ultrathin films
Ferromagnetic thin films with magnetic single-ion anisotropies are studied
within the framework of Schwinger bosonization of a quantum Heisenberg model.
Two alternative bosonizations are discussed. We show that qualitatively correct
results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the
Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite
temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective
anisotropies as functions of exchange interaction, magnetic anisotropies,
external magnetic field, and temperature for arbitrary values of the spin
quantum number. Magnetic reorientation transitions and effective anisotropies
are discussed. The results obtained by Schwinger boson mean-field theory are
compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as
publishe
Mouse Mos protooncogene product is present and functions during oogenesis.
We have identified the mouse Mos-encoded protein product, p39mos, in maturing mouse oocytes and have shown that it is indistinguishable from the product expressed in Mos-transformed NIH 3T3 cells. p39mos is detected in oocytes arrested in the first meiotic prophase, during germinal-vesicle breakdown, metaphase I, anaphase I, and in ovulated eggs. We show that microinjection of three different Mos antisense (but not sense) oligodeoxyribonucleotides into germinal vesicle-stage oocytes prevents first polar-body emission and therefore interrupted the normal progression of meiosis. These results show that in mouse oocytes, as in the amphibian Xenopus [Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & Vande Woude, G.F. (1988) Nature (London) 335, 519-525], the product of Mos is necessary for normal meiotic maturation
- …