29 research outputs found

    Search for unbound 15Be states in the 3n+12Be channel

    Get PDF
    15Be is expected to have low-lying 3/2+ and 5/2+ states. A first search did not observe the 3/2+ [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)], however, a resonance in 15Be was populated in a second attempt and determined to be unbound with respect to 14Be by 1.8(1) MeV with a tentative spin-parity assignment of 5/2+ [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)]. Search for the predicted 15Be 3/2+ state in the three-neutron decay channel. A two-proton removal reaction from a 55 MeV/u 17C beam was used to populate neutron-unbound states in 15Be. The two-, three-, and four-body decay energies of the 12Be + neutron(s) detected in coincidence were reconstructed using invariant mass spectroscopy. Monte Carlo simulations were performed to extract the resonance and decay properties from the observed spectra. The low-energy regions of the decay energy spectra can be described with the first excited unbound state of 14Be (E_x=1.54 MeV, E_r=0.28 MeV). Including a state in 15Be that decays through the first excited 14Be state slightly improves the fit at higher energies though the cross section is small. A 15Be component is not needed to describe the data. If the 3/2+ state in 15Be is populated, the decay by three-neutron emission through 14Be is weak, less than or equal to 11% up to 4 MeV. In the best fit, 15Be is unbound with respect to 12Be by 1.4 MeV (unbound with respect to $14Be by 2.66 MeV) with a strength of 7%.Comment: 6 pages, 5 figures, accepted in Physical Review

    First observation of 13^{13}Li ground state

    Full text link
    The ground state of neutron-rich unbound 13^{13}Li was observed for the first time in a one-proton removal reaction from 14^{14}Be at a beam energy of 53.6 MeV/u. The 13^{13}Li ground state was reconstructed from 11^{11}Li and two neutrons giving a resonance energy of 120−80+60^{+60}_{-80} keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body (11^{11}Li+n+nn+n) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate 12^{12}Li system (11^{11}Li+nn) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.Comment: Accepted for publication in Phys. Rev. C as a Rapid Communicatio

    Structure and Decay Correlations of Two-Neutron Systems Beyond the Dripline

    Full text link
    The two-neutron unbound systems of 16Be, 13Li, 10He, and 26O have been measured using the Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet setup. The correlations of the 3-body decay for the 16Be and 13Li were extracted and demonstrated a strong correlated enhancement between the two neutrons. The measurement of the 10He ground state resonance from a 14Be(−2p2n) reaction provided insight into previous predictions that wavefunction of the entrance channel, projectile, can influence the observed decay energy spectrum for the unbound system. Lastly, the decay-in-target (DiT) technique was utilized to extract the lifetime of the 26O ground state. The measured lifetime of 4.5+1.1 −1.5 (stat.)±3(sys.) ps provides the first indication of two-neutron radioactivity

    Observation of Ground-State Two-Neutron Decay

    Get PDF
    Neutron decay spectroscopy has become a successful tool to explore nuclear properties of nuclei with the largest neutron-to-proton ratios. Resonances in nuclei located beyond the neutron dripline are accessible by kinematic reconstruction of the decay products. The development of two-neutron detection capabilities of the Modular Neutron Array (MoNA) at NSCL has opened up the possibility to search for unbound nuclei which decay by the emission of two neutrons. Specifically this exotic decay mode was observed in 16Be and 26O.Comment: To be published in Acta Physica Polonica

    Exploring the neutron dripline two neutrons at a time: The first observations of the 26O and 16Be ground state resonances

    Full text link
    The two-neutron unbound ground state resonances of 26^{26}O and 16^{16}Be were populated using one-proton knockout reactions from 27^{27}F and 17^{17}B beams. A coincidence measurement of 3-body system (fragment + n + n) allowed for the decay energy of the unbound nuclei to be reconstructed. A low energy resonance, << 200 keV, was observed for the first time in the 24^{24}O + n + n system and assigned to the ground state of 26^{26}O. The 16^{16}Be ground state resonance was observed at 1.35 MeV. The 3-body correlations of the 14^{14}Be + n + n system were compared to simulations of a phase-space, sequential, and dineutron decay. The strong correlations in the n-n system from the experimental data could only be reproduced by the dineutron decay simulation providing the first evidence for a dineutron-like decay.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Search for Unbound Be-15 States in the 3n+Be-12 Channel

    Get PDF
    Background: Be-15 is expected to have low-lying 3/2(+) and 5/2(+) states. A first search did not find the 3/2(+) [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)]; however, a resonance in Be-15 was populated in a second attempt and determined to be unbound with respect to Be-14 by 1.8(1) MeV with a tentative spin-parity assignment of 5/2(+) [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)]. Purpose: Search for the predicted Be-15 3/2(+) state in the three-neutron decay channel. Method: A two-proton removal reaction from a 55 MeV/u C-17 beam was used to populate neutron-unbound states in Be-15. The two-, three-, and four-body decay energies of the Be-12+ neutron(s) detected in coincidence were reconstructed using invariant mass spectroscopy. Monte Carlo simulations were performed to extract the resonance and decay properties from the observed spectra. Results: The low-energy regions of the decay energy spectra can be described with the first excited unbound state of Be-14 (E-x = 1.54 MeV, E-r = 0.28 MeV). Including a state in Be-15 that decays through the first excited Be-14 state slightly improves the fit at higher energies though the cross section is small. Conclusions: A Be-15 component is not needed to describe the data. If the 3/2(+) state in Be-15 is populated, the decay by three-neutron emission through Be-14 is weak

    First Observation of Ground State Dineutron Decay: Be-16

    No full text
    We report on the first observation of dineutron emission in the decay of Be-16. A single-proton knockout reaction from a 53 MeV/u B-17 beam was used to populate the ground state of Be-16. Be-16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be-16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region

    Comment on First Observation of Ground State Dineutron Decay: Be-16 Reply (Spyrou et al. Replies)

    No full text
    We report on the first observation of dineutron emission in the decay of 16Be. A single-proton knockout reaction from a 53  MeV/u 17B beam was used to populate the ground state of 16Be. 16Be is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of 16Be was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region
    corecore