25 research outputs found

    Dominant Effect of Near-Interface Native Point Defects on ZnO Schottky Barriers

    Get PDF
    The authors used depth-resolved cathodoluminescence spectroscopy and current-voltage measurements to probe metal-ZnO diodes as a function of native defect concentration, oxygen plasma processing, and metallization. The results show that resident native defects in ZnO single crystals and native defects created by the metallization process dominate metal-ZnO Schottky barrier heights and ideality factors. Results for ZnO(0001) faces processed with room temperature remote oxygen plasmas to remove surface adsorbates and reduce subsurface native defects demonstrate the pivotal importance of crystal growth quality and metal-ZnO reactivity in forming near-interface states that control Schottky barrier properties

    Thermally Driven Defect Formation and Blocking Layers at Metal-ZnO Interfaces

    Get PDF
    The authors used depth-resolved cathodoluminescence spectroscopy and current-voltage measurements to probe the temperature-dependent formation of native point defects and reaction layers at metal-ZnO interfaces and their effect on transport properties. These results identify characteristic defect emissions corresponding to metal-Zn alloy versus oxide formation. Au alloys with Zn above its eutectic temperature, while Ta forms oxide blocking layers that reduce current by orders of magnitude at intermediate temperatures. Defects generated at higher temperatures and/or with higher initial defect densities for all interfaces produce Ohmic contacts. These reactions and defect formation with annealing reveal a thermodynamic control of blocking versus Ohmic contacts

    Role of Near-Surface States in Ohmic-Schottky Conversion of Au Contacts to ZnO

    Get PDF
    A conversion from ohmic to rectifying behavior is observed for Au contacts on atomically ordered polar ZnO surfaces following remote, room-temperature oxygen plasma treatment. This transition is accompanied by reduction of the “green” deep level cathodoluminescence emission, suppression of the hydrogen donor-bound exciton photoluminescence and a ∼ 0.75 eV increase in n-type band bending observed via x-ray photoemission. These results demonstrate that the contact type conversion involves more than one mechanism, specifically, removal of the adsorbate-induced accumulation layer plus lowered tunneling due to reduction of near-surface donor density and defect-assisted hopping transport

    Surface Traps in Vapor-Phase-Grown Bulk ZnO Studied by Deep Level Transient Spectroscopy

    No full text
    Deep level transient spectroscopy, current-voltage, and capacitance-voltage measurements are used to study interface traps in metal-on-bulk-ZnO Schottky barrier diodes (SBDs). c-axis-oriented ZnO samples were cut from two different vapor-phase-grown crystals, and Au- and Pd-SBDs were formed on their (0001) surfaces after remote oxygen-plasma treatment. As compared to Au-SBDs, the Pd-SBDs demonstrated higher reverse-bias leakage current and forward-bias current evidently due to higher carrier concentrations, which might have been caused by hydrogen in-diffusion through the thin Pd metal. The dominant traps included the well-known bulk traps E3 (0.27 eV) and E4 (0.49 eV). In addition, a surface-related trap, Es (0.49 eV), is observed but only in the Pd-SBDs, not in the Au-SBDs. Trap Es is located at depths less than about 95 nm and shows an electron capture behavior indicative of extended defects. A possible correspondence between trap Es and the well-known 2.45 eV green band is suggested by depth-resolved cathodoluminescence spectroscopy on the same samples, which reveals an increase in the intensity of this band within ∼ 100 nm of the Pd/ZnO interface

    Surface Traps in Vapor-Phase-Grown Bulk ZnO Studied by Deep Level Transient Spectroscopy

    Get PDF
    Deep level transient spectroscopy, current-voltage, and capacitance-voltage measurements are used to study interface traps in metal-on-bulk-ZnO Schottky barrier diodes (SBDs). c-axis-oriented ZnO samples were cut from two different vapor-phase-grown crystals, and Au- and Pd-SBDs were formed on their (0001) surfaces after remote oxygen-plasma treatment. As compared to Au-SBDs, the Pd-SBDs demonstrated higher reverse-bias leakage current and forward-bias current evidently due to higher carrier concentrations, which might have been caused by hydrogen in-diffusion through the thin Pd metal. The dominant traps included the well-known bulk traps E3 (0.27 eV) and E4 (0.49 eV). In addition, a surface-related trap, Es (0.49 eV), is observed but only in the Pd-SBDs, not in the Au-SBDs. Trap Es is located at depths less than about 95 nm and shows an electron capture behavior indicative of extended defects. A possible correspondence between trap Es and the well-known 2.45 eV green band is suggested by depth-resolved cathodoluminescence spectroscopy on the same samples, which reveals an increase in the intensity of this band within ∼ 100 nm of the Pd/ZnO interface
    corecore