14 research outputs found

    DNA-Liposome Hybrid Carriers for Triggered Cargo Release

    Get PDF
    The design of simple and versatile synthetic routes to accomplish triggered-release properties in carriers is of particular interest for drug delivery purposes. In this context, the programmability and adaptability of DNA nanoarchitectures in combination with liposomes have great potential to render biocompatible hybrid carriers for triggered cargo release. We present an approach to form a DNA mesh on large unilamellar liposomes incorporating a stimuli-responsive DNA building block. Upon incubation with a single-stranded DNA trigger sequence, a hairpin closes, and the DNA building block is allowed to self-contract. We demonstrate the actuation of this building block by single-molecule Förster resonance energy transfer (FRET), fluorescence recovery after photobleaching, and fluorescence quenching measurements. By triggering this process, we demonstrate the elevated release of the dye calcein from the DNA-liposome hybrid carriers. Interestingly, the incubation of the doxorubicin-laden active hybrid carrier with HEK293T cells suggests increased cytotoxicity relative to a control carrier without the triggered-release mechanism. In the future, the trigger could be provided by peritumoral nucleic acid sequences and lead to site-selective release of encapsulated chemotherapeutics. © 2022 American Chemical Society. All rights reserved

    Electrostatic Force Method:

    No full text

    XCleaner: A new method for clustering XML documents by structure

    No full text
    With the vastly growing data resources on the Internet, XML is one of the most important standards for document management. Not only does it provide enhancements to document exchange and storage, but it is also helpful in a variety of information retrieval tasks. Document clustering is one of the most interesting research areas that utilize semi-structural nature of XML. In this paper, we put forward a new XML clustering algorithm that relies solely on document structure. We propose the use of maximal frequent subtrees and an operator called Satisf/Violate to divide documents into groups. The algorithm is experimentally evaluated on real and synthetic data sets with promising results

    EVALUATION OF EVIDENCE IN INTERNET AUCTION FRAUD INVESTIGATIONS

    No full text
    Internet auction fraud has become prevalent. Methodologies for detecting fraudulent transactions use historical information about Internet auction participants to decide whether or not a user is a potential fraudster. The information includes reputation scores, values of items, time frames of various activities and transaction records. This paper presents a distinctive set of fraudster characteristics based on an analysis of 278 allegations about the sale of counterfeit goods at Internet auction sites. Also, it applies a Bayesian approach to analyze the relevance of evidence in Internet auction fraud cases

    Comparison of the ionic conductivity properties of microporous and mesoporous MOFs infiltrated with a Na-ion containing IL mixture.

    Get PDF
    IL@MOF (IL: ionic liquid; MOF: metal-organic framework) materials have been proposed as a candidate for solid-state electrolytes, combining the inherent non-flammability and high thermal and chemical stability of the ionic liquid with the host-guest interactions of the MOF. In this work, we compare the structure and ionic conductivity of a sodium ion containing IL@MOF composite formed from a microcrystalline powder of the zeolitic imidazolate framework (ZIF), ZIF-8 with a hierarchically porous sample of ZIF-8 containing both micro- and mesopores from a sol-gel synthesis. Although the crystallographic structures were shown to be the same by X-ray diffraction, significant differences in particle size, packing and morphology were identified by electron microscopy techniques which highlight the origins of the hierarchical porosity. After incorporation of Na0.1EMIM0.9TFSI (abbreviated to NaIL; EMIM = 1-ethyl-3-methylimidazolium; TFSI = bis(trifluoromethylsulfonyl)imide), the hierarchically porous composite exhibited a 40% greater filling capacity than the purely microporous sample which was confirmed by elemental analysis and digestive proton NMR. Finally, the ionic conductivity properties of the composite materials were probed by electrochemical impedance spectroscopy. The results showed that despite the 40% increased loading of NaIL in the NaIL@ZIF-8micro sample, the ionic conductivities at 25 °C were 8.4 × 10-6 and 1.6 × 10-5 S cm-1 for NaIL@ZIF-8meso and NaIL@ZIF-8micro respectively. These results exemplify the importance of the long range, continuous ion pathways contributed by the microcrystalline pores, as well as the limited contribution from the discontinuous mesopores to the overall ionic conductivity

    Identifying equivalent relation paths in knowledge graphs

    Get PDF
    Relation paths are sequences of relations with inverse that allow for complete exploration of knowledge graphs in a two-way unconstrained manner. They are powerful enough to encode complex relationships between entities and are crucial in several contexts, such as knowledge base verification, rule mining, and link prediction. However, fundamental forms of reasoning such as containment and equivalence of relation paths have hitherto been ignored. Intuitively, two relation paths are equivalent if they share the same extension, i.e., set of source and target entity pairs. In this paper, we study the problem of containment as a means to find equivalent relation paths and show that it is very expensive in practice to enumerate paths between entities. We characterize the complexity of containment and equivalence of relation paths and propose a domain-independent and unsupervised method to obtain approximate equivalences ranked by a tri-criteria ranking function. We evaluate our algorithm using test cases over real-world data and show that we are able to find semantically meaningful equivalences efficiently

    Hierarchical Bitmap Index: An Efficient and Scalable Indexing Technique for Set-Valued Attributes

    No full text
    Set-valued attributes are convenient to model complex objects occurring in the real world. Currently available database systems support the storage of set-valued attributes in relational tables but contain no primitives to query them e#ciently. Queries involving set-valued attributes either perform full scans of the source data or make multiple passes over single-value indexes to reduce the number of retrieved tuples
    corecore