120 research outputs found

    Resolving the H-alpha-emitting Region in the Wind of Eta Carinae

    Full text link
    The massive evolved star Eta Carinae is the most luminous star in the Milky Way and has the highest steady wind mass-loss rate of any known star. Radiative transfer models of the spectrum by Hillier et al. predict that H-alpha is mostly emitted in regions of the wind at radii of 6 to 60 AU from the star (2.5 to 25 mas at 2.35 kpc). We present diffraction-limited images (FWHM ~25 mas) with Magellan adaptive optics in two epochs, showing that Eta Carinae consistently appears ~2.5 to 3 mas wider in H-alpha emission compared to the adjacent 643 nm continuum. This implies that the H-alpha line-forming region may have a characteristic emitting radius of 12 mas or ~30 AU, in very good agreement with the Hillier stellar-wind model. This provides direct confirmation that the physical wind parameters of that model are roughly correct, including the mass-loss rate of 10^-3 M_sun/yr, plus the clumping factor, and the terminal velocity. Comparison of the H-alpha images (ellipticity and PA) to the continuum images reveals no significant asymmetries at H-alpha. Hence, any asymmetry induced by a companion or by the primary's rotation do not strongly influence the global H-alpha emission in the outer wind.Comment: Published in ApJ

    High-contrast imaging in the Hyades with snapshot LOCI

    Full text link
    To image faint substellar companions obscured by the stellar halo and speckles, scattered light from the bright primary star must be removed in hardware or software. We apply the "locally-optimized combination of images" (LOCI) algorithm to 1-minute Keck Observatory snapshots of GKM dwarfs in the Hyades using source diversity to determine the most likely PSF. We obtain a mean contrast of 10^{-2} at 0.01", 10^{-4} at <1", and 10^{-5} at 5". New brown dwarf and low-mass stellar companions to Hyades primaries are found in a third of the 84 targeted systems. This campaign shows the efficacy of LOCI on snapshot imaging as well as on bright wide binaries with off-axis LOCI, reaching contrasts sufficient for imaging 625-Myr late-L/early-T dwarfs purely in post-processing.Comment: 12 pages, 12 figures, to appear in SPIE Astronomy 2012, paper 8447-16

    The Intricate Structure of HH 508, the Brightest Microjet in the Orion Nebula

    Full text link
    We present Magellan adaptive optics Hα\alpha imaging of HH 508, which has the highest surface brightness among protostellar jets in the Orion Nebula. We find that HH 508 actually has a shorter component to the west, and a longer and knotty component to the east. The east component has a kink at 0.3" from the jet-driving star θ1\theta^1 Ori B2, so it may have been deflected by the wind/radiation from the nearby θ1\theta^1 Ori B1B5. The origin of both components is unclear, but if each of them is a separate jet, then θ1\theta^1 Ori B2 may be a tight binary. Alternatively, HH 508 may be a slow-moving outflow, and each component represents an illuminated cavity wall. The ionization front surrounding θ1\theta^1 Ori B2B3 does not directly face θ1\theta^1 Ori B1B5, suggesting that the EUV radiation from θ1\theta^1 Ori C plays a dominant role in affecting the morphology of proplyds even in the vicinity of θ1\theta^1 Ori B1B5. Finally, we report an Hα\alpha blob that might be ejected by the binary proplyd LV 1.Comment: 4 pages. Published in Ap

    The Orbit of the Companion to HD 100453A: Binary-Driven Spiral Arms in a Protoplanetary Disk

    Full text link
    HD 100453AB is a 10+/-2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.05", or ~108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD 100453AB between 2015-2017 utilizing extreme adaptive optics systems on the Very Large Telescope and Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary's orbit to a=1.06"+/-0.09", e=0.17+/-0.07, and i=32.5+/- 6.5 degrees. We utilized publicly available ALMA CO data to constrain the inclination of the disk to i~28 degrees, which is relatively co-planar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamical and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-dirven origin. Furthermore, we find that the primary star's rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.Comment: 28 pages, 11 figures, Accepted to Ap
    • …
    corecore