152 research outputs found

    Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics

    Full text link
    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-um-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r_0=10-15cm. The MEMS when solitary suffered saturation ~4% of the time. Simulating a woofer DM with ~5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.Comment: 16 pages, 10 figure

    Resolving the H-alpha-emitting Region in the Wind of Eta Carinae

    Full text link
    The massive evolved star Eta Carinae is the most luminous star in the Milky Way and has the highest steady wind mass-loss rate of any known star. Radiative transfer models of the spectrum by Hillier et al. predict that H-alpha is mostly emitted in regions of the wind at radii of 6 to 60 AU from the star (2.5 to 25 mas at 2.35 kpc). We present diffraction-limited images (FWHM ~25 mas) with Magellan adaptive optics in two epochs, showing that Eta Carinae consistently appears ~2.5 to 3 mas wider in H-alpha emission compared to the adjacent 643 nm continuum. This implies that the H-alpha line-forming region may have a characteristic emitting radius of 12 mas or ~30 AU, in very good agreement with the Hillier stellar-wind model. This provides direct confirmation that the physical wind parameters of that model are roughly correct, including the mass-loss rate of 10^-3 M_sun/yr, plus the clumping factor, and the terminal velocity. Comparison of the H-alpha images (ellipticity and PA) to the continuum images reveals no significant asymmetries at H-alpha. Hence, any asymmetry induced by a companion or by the primary's rotation do not strongly influence the global H-alpha emission in the outer wind.Comment: Published in ApJ

    High-contrast imaging in the Hyades with snapshot LOCI

    Full text link
    To image faint substellar companions obscured by the stellar halo and speckles, scattered light from the bright primary star must be removed in hardware or software. We apply the "locally-optimized combination of images" (LOCI) algorithm to 1-minute Keck Observatory snapshots of GKM dwarfs in the Hyades using source diversity to determine the most likely PSF. We obtain a mean contrast of 10^{-2} at 0.01", 10^{-4} at <1", and 10^{-5} at 5". New brown dwarf and low-mass stellar companions to Hyades primaries are found in a third of the 84 targeted systems. This campaign shows the efficacy of LOCI on snapshot imaging as well as on bright wide binaries with off-axis LOCI, reaching contrasts sufficient for imaging 625-Myr late-L/early-T dwarfs purely in post-processing.Comment: 12 pages, 12 figures, to appear in SPIE Astronomy 2012, paper 8447-16
    • …
    corecore