18 research outputs found

    Study of Blade/Vortex interaction using Computational Fluid Dynamics and Computational Aeroacoustics

    Get PDF
    Abstract A parametric study of the aerodynamics and the acoustics of parallel BVI has been carried out for different aerofoil shapes and vortex properties. Computing BVI using Computational Fluid Dynamics is challenging since the solution scheme tends to alter the characteristics of the vortex which must be preserved until the interaction. The present work uses the Compressible Vorticity Confinement Method (CVCM) for capturing the vortex characteristics, which is easier to implement and has minimal overhead in the performance of existing CFD solvers either in terms of CPU time or robustness during convergence. Apart from applying the CVCM method with an upwind solver, something not encountered in the literature, the present work couples CFD with Computational Aeroacoustics (CAA) and uses the strengths of both techniques in order to predict the nearfield and farfield noise. Results illustrate the importance of the aerofoil shape at transonic flow and show that the magnitude of the BVI noise depends strongly on the vortex strength and the miss-distance. The effect of the vortex core radius was also found to be important
    corecore