3,367 research outputs found

    Extracting Radial Velocities of A- and B-type Stars from Echelle Spectrograph Calibration Spectra

    Get PDF
    We present a technique to extract radial velocity measurements from echelle spectrograph observations of rapidly rotating stars (Vsini50V\sin{i} \gtrsim 50 km s1^{-1}). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the radial velocity shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract radial velocity measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute radial velocities with a precision ranging from 0.5-2.0 km s1^{-1} per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with radial velocity scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly-rotating stars.Comment: Accepted to ApJ

    Spin Amplification for Magnetic Sensors Employing Crystal Defects

    Get PDF
    Recently there have been several theoretical and experimental studies of the prospects for magnetic field sensors based on crystal defects, especially nitrogen vacancy (NV) centres in diamond. Such systems could potentially be incorporated into an AFM-like apparatus in order to map the magnetic properties of a surface at the single spin level. In this Letter we propose an augmented sensor consisting of an NV centre for readout and an `amplifier' spin system that directly senses the local magnetic field. Our calculations show that this hybrid structure has the potential to detect magnetic moments with a sensitivity and spatial resolution far beyond that of a simple NV centre, and indeed this may be the physical limit for sensors of this class

    Integrated control of vector-borne diseases of livestock--pyrethroids: panacea or poison?

    No full text
    Tick- and tsetse-borne diseases cost Africa approximately US$4-5 billion per year in livestock production-associated losses. The use of pyrethroid-treated cattle to control ticks and tsetse promises to be an increasingly important tool to counter this loss. However, uncontrolled use of this technology might lead to environmental damage, acaricide resistance in tick populations and a possible exacerbation of tick-borne diseases. Recent research to identify, quantify and to develop strategies to avoid these effects are highlighted

    A Silicon Surface Code Architecture Resilient Against Leakage Errors

    Get PDF
    Spin qubits in silicon quantum dots are one of the most promising building blocks for large scale quantum computers thanks to their high qubit density and compatibility with the existing semiconductor technologies. High fidelity single-qubit gates exceeding the threshold of error correction codes like the surface code have been demonstrated, while two-qubit gates have reached 98\% fidelity and are improving rapidly. However, there are other types of error --- such as charge leakage and propagation --- that may occur in quantum dot arrays and which cannot be corrected by quantum error correction codes, making them potentially damaging even when their probability is small. We propose a surface code architecture for silicon quantum dot spin qubits that is robust against leakage errors by incorporating multi-electron mediator dots. Charge leakage in the qubit dots is transferred to the mediator dots via charge relaxation processes and then removed using charge reservoirs attached to the mediators. A stabiliser-check cycle, optimised for our hardware, then removes the correlations between the residual physical errors. Through simulations we obtain the surface code threshold for the charge leakage errors and show that in our architecture the damage due to charge leakage errors is reduced to a similar level to that of the usual depolarising gate noise. Spin leakage errors in our architecture are constrained to only ancilla qubits and can be removed during quantum error correction via reinitialisations of ancillae, which ensure the robustness of our architecture against spin leakage as well. Our use of an elongated mediator dots creates spaces throughout the quantum dot array for charge reservoirs, measuring devices and control gates, providing the scalability in the design

    Ensemble based quantum metrology

    Full text link
    The field of quantum metrology promises measurement devices that are fundamentally superior to conventional technologies. Specifically, when quantum entanglement is harnessed the precision achieved is supposed to scale more favourably with the resources employed, such as system size and the time required. Here we consider measurement of magnetic field strength using an ensemble of spins, and we identify a third essential resource: the initial system polarisation, i.e. the low entropy of the original state. We find that performance depends crucially on the form of decoherence present; for a plausible dephasing model, we describe a quantum strategy which can indeed beat the standard quantum limit
    corecore