13 research outputs found

    Two Genetic Loci Regulate T Cell–Dependent Islet Inflammation and Drive Autoimmune Diabetes Pathogenesis

    Get PDF
    Insulin-dependent diabetes mellitus (IDDM) is a polygenic disease caused by progressive autoimmune infiltration (insulitis) of the pancreatic islets of Langerhan, culminating in the destruction of insulin-producing β cells. Genome scans of families with diabetes suggest that multiple loci make incremental contributions to disease susceptibility. However, only the IDDM1 locus is well characterized, at a molecular and functional level, as alleleic variants of the major histocompatibility complex (MHC) class II HLA-DQB1, DRB1, and DPB1 genes that mediate antigen presentation to T cells. In the nonobese diabetic (NOD) mouse model, the Idd1 locus was shown to be the orthologous MHC gene I-Ab. Inheritance of susceptibility alleles at IDDM1/Idd1 is insufficient for disease development in humans and NOD mice. However, the identities and functions of the remaining diabetes loci (Idd2–Idd19 in NOD mice) are largely undefined. A crucial limitation in previous genetic linkage studies of this disease has been reliance on a single complex phenotype—diabetes that displays low penetrance and is of limited utility for high-resolution genetic mapping. Using the NOD model, we have identified an early step in diabetes pathogenesis that behaves as a highly penetrant trait. We report that NOD-derived alleles at both the Idd5 and Idd13 loci regulate a T lymphocyte–dependent progression from a benign to a destructive stage of insulitis. Human chromosomal regions orthologous to the Idd5 and -13 intervals are also linked to diabetes risk, suggesting that conserved genes encoded at these loci are central regulators of disease pathogenesis. These data are the first to reveal a role for individual non-MHC Idd loci in a specific, critical step in diabetes pathogenesis—T cell recruitment to islet lesions driving destructive inflammation. Importantly, identification of intermediate phenotypes in complex disease pathogenesis provides the tools required to progress toward gene identification at these loci

    Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse.

    No full text
    The signal regulatory protein (SIRP) locus encodes a family of paired receptors that mediate both activating and inhibitory signals and is associated with type 1 diabetes (T1D) risk. The NOD mouse model recapitulates multiple features of human T1D and enables mechanistic analysis of the impact of genetic variations on disease. In this study, we identify Sirpa encoding an inhibitory receptor on myeloid cells as a gene in the insulin-dependent diabetes locus 13.2 (Idd13.2) that drives islet inflammation and T1D. Compared to T1D-resistant strains, the NOD variant of SIRPα displayed greater binding to its ligand CD47, as well as enhanced T cell proliferation and diabetogenic potency. Myeloid cell-restricted expression of a Sirpa transgene accelerated disease in a dose-dependent manner and displayed genetic and functional interaction with the Idd5 locus to potentiate insulitis progression. Our study demonstrates that variations in both SIRPα sequence and expression level modulate T1D immunopathogenesis. Thus, we identify Sirpa as a T1D risk gene and provide insight into the complex mechanisms by which disease-associated variants act in concert to drive defined stages in disease progression

    Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse.

    No full text
    The signal regulatory protein (SIRP) locus encodes a family of paired receptors that mediate both activating and inhibitory signals and is associated with type 1 diabetes (T1D) risk. The NOD mouse model recapitulates multiple features of human T1D and enables mechanistic analysis of the impact of genetic variations on disease. In this study, we identify Sirpa encoding an inhibitory receptor on myeloid cells as a gene in the insulin-dependent diabetes locus 13.2 (Idd13.2) that drives islet inflammation and T1D. Compared to T1D-resistant strains, the NOD variant of SIRPα displayed greater binding to its ligand CD47, as well as enhanced T cell proliferation and diabetogenic potency. Myeloid cell-restricted expression of a Sirpa transgene accelerated disease in a dose-dependent manner and displayed genetic and functional interaction with the Idd5 locus to potentiate insulitis progression. Our study demonstrates that variations in both SIRPα sequence and expression level modulate T1D immunopathogenesis. Thus, we identify Sirpa as a T1D risk gene and provide insight into the complex mechanisms by which disease-associated variants act in concert to drive defined stages in disease progression

    gamma delta T Cells Are Essential Effectors of Type 1 Diabetes in the Nonobese Diabetic Mouse Model

    No full text
    γδ T cells, a lineage of innate-like lymphocytes, are distinguished from conventional αβ T cells in their antigen-recognition, cell activation requirements and effector functions. γδ T cells have been implicated in the pathology of several human autoimmune and inflammatory diseases and their corresponding mouse models, but their specific roles in these diseases have not been elucidated. We report that γδTCR(+) cells including both the CD27(−)CD44(hi) and CD27(+)CD44(lo) subsets infiltrate islets of pre-diabetic non-obese diabetic (NOD) mice. Moreover, NOD CD27(−)CD44(hi) and CD27(+)CD44(lo) γδ T cells were pre-programmed to secrete IL-17, or IFN-γ upon activation. Adoptive transfer of T1D to T and B lymphocyte-deficient NOD recipients was greatly potentiated when γδ T cells, and specifically the CD27(−) γδ T cell subset, were included compared to transfer of αβ T cells alone. Antibody-mediated blockade of IL-17 prevented T1D transfer in this setting. Moreover, introgression of genetic Tcrd deficiency onto the NOD background provided robust T1D protection, supporting a non-redundant, pathogenic role of γδ T cells in this model. The potent contributions of CD27(−) γδ T cells and IL-17 to islet inflammation and diabetes reported here suggest that these mechanisms may also underlie human T1D

    Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse

    No full text
    The signal regulatory protein (SIRP) locus encodes a family of paired receptors that mediate both activating and inhibitory signals and is associated with type 1 diabetes (T1D) risk. The NOD mouse model recapitulates multiple features of human T1D and enables mechanistic analysis of the impact of genetic variations on disease. In this study, we identify Sirpa encoding an inhibitory receptor on myeloid cells as a gene in the insulin-dependent diabetes locus 13.2 (Idd13.2) that drives islet inflammation and T1D. Compared to T1D-resistant strains, the NOD variant of SIRPa displayed greater binding to its ligand CD47, as well as enhanced T cell proliferation and diabetogenic potency. Myeloid cell-restricted expression of a Sirpa transgene accelerated disease in a dosedependent manner and displayed genetic and functional interaction with the Idd5 locus to potentiate insulitis progression. Our study demonstrates that variations in both SIRPa sequence and expression level modulate T1D immunopathogenesis. Thus, we identify Sirpa as a T1D risk gene and provide insight into the complex mechanisms by which disease-associated variants act in concert to drive defined stages in disease progressio

    Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity

    No full text
    Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk
    corecore