20 research outputs found
Decomposition of Geometric Graphs into Star Forests
We solve a problem of Dujmovi\'c and Wood (2007) by showing that a complete
convex geometric graph on vertices cannot be decomposed into fewer than
star-forests, each consisting of noncrossing edges. This bound is clearly
tight. We also discuss similar questions for abstract graphs
Order-2 Delaunay Triangulations Optimize Angles
The local angle property of the (order-1) Delaunay triangulations of a generic set in R2 asserts that the sum of two angles opposite a common edge is less than π. This paper extends this property to higher order and uses it to generalize two classic properties from order-1 to order-2: (1) among the complete level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation lexicographically maximizes the sorted angle vector; (2) among the maximal level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation is the only one that has the local angle property. We also use our method of establishing (2) to give a new short proof of the angle vector optimality for the (order-1) Delaunay triangulation. For order-1, both properties have been instrumental in numerous applications of Delaunay triangulations, and we expect that their generalization will make order-2 Delaunay triangulations more attractive to applications as well
On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane
For a locally finite set in R2, the order-k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k. As an example, a stationary Poisson point process in R2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distribution of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles in 1970
LIPIcs
Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation
On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane
For a locally finite set in , the order- Brillouin
tessellations form an infinite sequence of convex face-to-face tilings of the
plane. If the set is coarsely dense and generic, then the corresponding
infinite sequences of minimum and maximum angles are both monotonic in . As
an example, a stationary Poisson point process in is locally
finite, coarsely dense, and generic with probability one. For such a set, the
distribution of angles in the Voronoi tessellations, Delaunay mosaics, and
Brillouin tessellations are independent of the order and can be derived from
the formula for angles in order- Delaunay mosaics given by Miles in 1970
Brillouin Zones of Integer Lattices and Their Perturbations
For a locally finite set, ⊆ℝ , the th Brillouin zone of ∈ is the region of points ∈ℝ for which ‖−‖ is the th smallest among the Euclidean distances between and the points in . If is a lattice, the th Brillouin zones of the points in are translates of each other, and together they tile space. Depending on the value of , they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in ℝ2 , and the convergence of the maximum volume of a chamber to zero for the integer lattice
On a Bounded Budget Network Creation Game
We consider a network creation game in which each player (vertex) has a fixed
budget to establish links to other players. In our model, each link has unit
price and each agent tries to minimize its cost, which is either its local
diameter or its total distance to other players in the (undirected) underlying
graph of the created network. Two versions of the game are studied: in the MAX
version, the cost incurred to a vertex is the maximum distance between the
vertex and other vertices, and in the SUM version, the cost incurred to a
vertex is the sum of distances between the vertex and other vertices. We prove
that in both versions pure Nash equilibria exist, but the problem of finding
the best response of a vertex is NP-hard. We take the social cost of the
created network to be its diameter, and next we study the maximum possible
diameter of an equilibrium graph with n vertices in various cases. When the sum
of players' budgets is n-1, the equilibrium graphs are always trees, and we
prove that their maximum diameter is Theta(n) and Theta(log n) in MAX and SUM
versions, respectively. When each vertex has unit budget (i.e. can establish
link to just one vertex), the diameter of any equilibrium graph in either
version is Theta(1). We give examples of equilibrium graphs in the MAX version,
such that all vertices have positive budgets and yet the diameter is
Omega(sqrt(log n)). This interesting (and perhaps counter-intuitive) result
shows that increasing the budgets may increase the diameter of equilibrium
graphs and hence deteriorate the network structure. Then we prove that every
equilibrium graph in the SUM version has diameter 2^O(sqrt(log n)). Finally, we
show that if the budget of each player is at least k, then every equilibrium
graph in the SUM version is k-connected or has diameter smaller than 4.Comment: 28 pages, 3 figures, preliminary version appeared in SPAA'1