1,636 research outputs found
Quantum optical effective-medium theory for loss-compensated metamaterials
A central aim in metamaterial research is to engineer sub-wavelength unit
cells that give rise to desired effective-medium properties and parameters,
such as a negative refractive index. Ideally one can disregard the details of
the unit cell and employ the effective description instead. A popular strategy
to compensate for the inevitable losses in metallic components of metamaterials
is to add optical gain material. Here we study the quantum optics of such
loss-compensated metamaterials at frequencies for which effective parameters
can be unambiguously determined. We demonstrate that the usual effective
parameters are insufficient to describe the propagation of quantum states of
light. Furthermore, we propose a quantum-optical effective-medium theory
instead and show that it correctly predicts the properties of the light
emerging from loss-compensated metamaterials.Comment: 6 pages, 3 figures. Accepted for Physical Review Letter
No Contribution of GAD-65 and IA-2 Autoantibodies around Time of Diagnosis to the Increasing Incidence of Juvenile Type 1 Diabetes:A 9-Year Nationwide Danish Study
Aims. A new perspective on autoantibodies as pivotal players in the pathogenesis of type 1 diabetes (T1D) has recently emerged. Our key objective was to examine whether increased levels of autoantibodies against the β-cell autoantigens glutamic acid decarboxylase (isoform 65) (GADA) and insulinoma associated antigen-2A (IA-2A) mirrored the 3.4% annual increase in incidence of T1D. Methods. From the Danish Childhood Diabetes Register, we randomly selected 500 patients and 500 siblings for GADA and IA-2A analysis (1997 through 2005). Blood samples were taken within three months after onset. A robust log-normal regression model was used. Nine hundred children and adolescents had complete records and were included in the analysis. Cochran-Armitage test for trend was used to evaluate changes in prevalence of autoantibody positivity by period. Results. No significant changes in levels of GADA and IA-2A were found over our 9-year study period. No trends in autoantibody positivity—in either patients or siblings—were found. Levels of GADA and IA-2A were significantly associated with HLA risk groups and GADA with age. Conclusion. The prevalence of positivity and the levels of GADA and IA-2A have not changed between 1997 and 2005 in newly diagnosed patients with T1D and their siblings without T1D
Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation
We develop a theory for describing frictional drag in bilayer systems with
in-plane periodic potential modulations, and use it to investigate the drag
between bilayer systems in which one of the layers is modulated in one
direction. At low temperatures, as the density of carriers in the modulated
layer is changed, we show that the transresistivity component in the direction
of modulation can change its sign. We also give a physical explanation for this
behavior.Comment: 4 pages, 4 figure
Photo-antagonism of the GABAA receptor
Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation
- …