5,418 research outputs found

    Mode-Field Radius of Photonic Crystal Fibers Expressed by the V-parameter

    Full text link
    We numerically calculate the equivalent mode-field radius of the fundamental mode in a photonic crystal fiber (PCF) and show that this is a function of the V-parameter only and not the relative hole size. This dependency is similar to what is found for graded-index standard fibers and we furthermore show that the relation for the PCF can be excellently approximated with the same general mathematical expression. This is to our knowledge the first semi-analytical description of the mode-field radius of a PCF.Comment: Accepted for Opt. Let

    Low-loss criterion and effective area considerations for photonic crystal fibers

    Get PDF
    We study the class of endlessly single-mode all-silica photonic crystal fibers with a triangular air-hole cladding. We consider the sensibility to longitudinal nonuniformities and the consequences and limitations for realizing low-loss large-mode area photonic crystal fibers. We also discuss the dominating scattering mechanism and experimentally we confirm that both macro and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic

    Modal cut-off and the V-parameter in photonic crystal fibers

    Full text link
    We address the long-standing unresolved problem concerning the V-parameter in a photonic crystal fiber (PCF). Formulate the parameter appropriate for a core-defect in a periodic structure we argue that the multi-mode cut-off occurs at a wavelength lambda* which satisfies V_PCF(lambda*)=pi. Comparing to numerics and recent cut-off calculations we confirm this result.Comment: 3 pages including 2 figures. Accepted for Optics Letter

    Predicting macrobending loss for large-mode area photonic crystal fibers

    Full text link
    We report on an easy-to-evaluate expression for the prediction of the bend-loss for a large mode area photonic crystal fiber (PCF) with a triangular air-hole lattice. The expression is based on a recently proposed formulation of the V-parameter for a PCF and contains no free parameters. The validity of the expression is verified experimentally for varying fiber parameters as well as bend radius. The typical deviation between the position of the measured and the predicted bend loss edge is within measurement uncertainty.Comment: Accepted for Optics Expres

    Low-loss photonic crystal fibers for transmission systems and their dispersion properties

    Full text link
    We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low-loss (< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres

    Improved large-mode area endlessly single-mode photonic crystal fibers

    Get PDF
    We numerically study the possibilities for improved large-mode area endlessly single mode photonic crystal fibers for use in high-power delivery applications. By carefully choosing the optimal hole diameter we find that a triangular core formed by three missing neighboring air holes considerably improves the mode area and loss properties compared to the case with a core formed by one missing air hole. In a realized fiber we demonstrate an enhancement of the mode area by ~30 % without a corresponding increase in the attenuation.Comment: 3 pages including 3 eps-figures. Accepted for Optics Letter

    Photonic crystal fiber with a hybrid honeycomb cladding

    Full text link
    We consider an air-silica honeycomb lattice and demonstrate a new approach to the formation of a core defect. Typically, a high or low-index core is formed by adding a high-index region or an additional air-hole (or other low-index material) to the lattice, but here we discuss how a core defect can be formed by manipulating the cladding region rather than the core region itself. Germanium-doping of the honeycomb lattice has recently been suggested for the formation of a photonic band-gap guiding silica-core and here we experimentally demonstrate how an index-guiding silica-core can be formed by fluorine-doping of the honeycomb lattice.Comment: 5 pages including 3 figures. Accepted for Optics Expres

    A real-space grid implementation of the Projector Augmented Wave method

    Get PDF
    A grid-based real-space implementation of the Projector Augmented Wave (PAW) method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional Theory (DFT) calculations is presented. The use of uniform 3D real-space grids for representing wave functions, densities and potentials allows for flexible boundary conditions, efficient multigrid algorithms for solving Poisson and Kohn-Sham equations, and efficient parallelization using simple real-space domain-decomposition. We use the PAW method to perform all-electron calculations in the frozen core approximation, with smooth valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of twenty small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency is comparable to standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review

    Nearly-zero transmission through periodically modulated ultrathin metal films

    Full text link
    Transmission of light through an optically ultrathin metal film with a thickness comparable to its skin depth is significant. We demonstrate experimentally nearly-zero transmission of light through a film periodically modulated by a one-dimensional array of subwavelength slits. The suppressed optical transmission is due to the excitation of surface plasmon polaritons and the zero-transmission phenomenon is strongly dependent on the polarization of the incident wave.Comment: accepted by AP
    • …
    corecore