6,999 research outputs found
Improved large-mode area endlessly single-mode photonic crystal fibers
We numerically study the possibilities for improved large-mode area endlessly
single mode photonic crystal fibers for use in high-power delivery
applications. By carefully choosing the optimal hole diameter we find that a
triangular core formed by three missing neighboring air holes considerably
improves the mode area and loss properties compared to the case with a core
formed by one missing air hole. In a realized fiber we demonstrate an
enhancement of the mode area by ~30 % without a corresponding increase in the
attenuation.Comment: 3 pages including 3 eps-figures. Accepted for Optics Letter
Low-loss photonic crystal fibers for transmission systems and their dispersion properties
We report on a single-mode photonic crystal fiber with attenuation and
effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively.
This is, to our knowledge, the lowest loss reported for a PCF not made from VAD
prepared silica and at the same time the largest effective area for a low-loss
(< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data
transmission and show for the first time, both numerically and experimentally,
how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres
Photonic crystal fiber with a hybrid honeycomb cladding
We consider an air-silica honeycomb lattice and demonstrate a new approach to
the formation of a core defect. Typically, a high or low-index core is formed
by adding a high-index region or an additional air-hole (or other low-index
material) to the lattice, but here we discuss how a core defect can be formed
by manipulating the cladding region rather than the core region itself.
Germanium-doping of the honeycomb lattice has recently been suggested for the
formation of a photonic band-gap guiding silica-core and here we experimentally
demonstrate how an index-guiding silica-core can be formed by fluorine-doping
of the honeycomb lattice.Comment: 5 pages including 3 figures. Accepted for Optics Expres
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
is theoretically studied. Using a scattering-matrix approach and the
Wigner-Smith delay time concept, we show that optical absorbance benefits both
from slow-light phenomena as well as a high filling factor of the energy
residing in the liquid. Utilizing strongly dispersive photonic crystal
structures, we numerically demonstrate how liquid-infiltrated photonic crystals
facilitate enhanced light-matter interactions, by potentially up to an order of
magnitude. The proposed concept provides strong opportunities for improving
existing miniaturized absorbance cells for optical detection in lab-on-a-chip
systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A.
Lavrinenko and P. J. Robert
Recommended from our members
Issue evolution and the remaking of partisan alignments in a European multiparty system: elite and mass repositioning in Denmark 1968-2011
Issue evolution is a well-established theoretical perspective in the analysis of long-term party competition and partisanship in the US. However, this perspective has rarely been used to analyze political elite effects on partisan polarization in European multiparty systems. Consequently, I apply the issue evolution perspective to polarization in a European multiparty system. I find an emergence of cultural issues in Denmark, where mass level polarization on cultural issues followed elite level polarization. Unlike two-party systems, niche parties drive issue evolution on the elite level, which is then followed by niche partisan polarization and, finally, mainstream party adaption. The findings illustrate the mechanisms of issue evolution in a European-style multiparty system and the role of niche parties
Transport coefficients for electrolytes in arbitrarily shaped nano and micro-fluidic channels
We consider laminar flow of incompressible electrolytes in long, straight
channels driven by pressure and electro-osmosis. We use a Hilbert space
eigenfunction expansion to address the general problem of an arbitrary cross
section and obtain general results in linear-response theory for the hydraulic
and electrical transport coefficients which satisfy Onsager relations. In the
limit of non-overlapping Debye layers the transport coefficients are simply
expressed in terms of parameters of the electrolyte as well as the geometrical
correction factor for the Hagen-Poiseuille part of the problem. In particular,
we consider the limits of thin non-overlapping as well as strongly overlapping
Debye layers, respectively, and calculate the corrections to the hydraulic
resistance due to electro-hydrodynamic interactions.Comment: 13 pages including 4 figures and 1 table. Typos corrected. Accepted
for NJ
Frequency response in surface-potential driven electro-hydrodynamics
Using a Fourier approach we offer a general solution to calculations of slip
velocity within the circuit description of the electro-hydrodynamics in a
binary electrolyte confined by a plane surface with a modulated surface
potential. We consider the case with a spatially constant intrinsic surface
capacitance where the net flow rate is in general zero while harmonic rolls as
well as time-averaged vortex-like components may exist depending on the spatial
symmetry and extension of the surface potential. In general the system displays
a resonance behavior at a frequency corresponding to the inverse RC time of the
system. Different surface potentials share the common feature that the
resonance frequency is inversely proportional to the characteristic length
scale of the surface potential. For the asymptotic frequency dependence above
resonance we find a 1/omega^2 power law for surface potentials with either an
even or an odd symmetry. Below resonance we also find a power law omega^alpha
with alpha being positive and dependent of the properties of the surface
potential. Comparing a tanh potential and a sech potential we qualitatively
find the same slip velocity, but for the below-resonance frequency response the
two potentials display different power law asymptotics with alpha=1 and
alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR
Levitated droplet dye laser
We present the first observation, to our knowledge, of lasing from a
levitated, dye droplet. The levitated droplets are created by computer
controlled pico-liter dispensing into one of the nodes of a standing ultrasonic
wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a
high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine
6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are
optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser,
and the dye laser emission is analyzed by a fixed grating spectrometer. With
this setup we have achieved reproducible lasing spectra in the visible
wavelength range from 610 nm to 650 nm. The levitated droplet technique has
previously successfully been applied for a variety of bio-analytical
applications at single cell level. In combination with the lasing droplets, the
capability of this high precision setup has potential applications within
highly sensitive intra-cavity absorbance detection.Comment: 6 pages including 3 figure
- …