155 research outputs found

    The Tolerance of Shewanella woodyi for Electric Potentials and Heavy Metals as Biofilms

    Get PDF
    Shewanella woodyi is a bioluminescent marine organism that is known to be metal tolerant and modulate the intensity of its luminescence with electrochemical potential. The viability of S. woodyi as a bioreporter for the toxic heavy metal zinc, copper, and silver was analyzed. Biofilms of S. woodyi was grown on marine broth agar plates and then exposed to various concentrations of each metal ion to evaluate biofilm response to the metal ions that were generated from an operating short circuited electrode containing either Zn, Cu, or Ag metal. The ability of the bacteria to tolerate the heavy metals and continue to luminesce was evaluated at designated distances from the electrode by ICP-OES. The possibility of an electricidal effect was determined to be insignificant near the electrodes. So, even though S. woodyi showed unprecedented tolerance for Zn(II), it would ultimately be a marginal living bioreporter without genetic modification

    Facile route to conformal hydrotalcite coatings over complex architectures:a hierarchically ordered nanoporous base catalyst for FAME production

    Get PDF
    An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production

    Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline

    Get PDF
    Background: There are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample. Here we describe a cost-effective root phenotyping pipeline, on which we perform time and accuracy benchmarking to identify bottlenecks in such pipelines and strategies for their acceleration. Results: Our root phenotyping pipeline was assembled with custom software and low cost material and equipment. Results show that sample preparation and handling of samples during screening are the most time consuming task in root phenotyping. Algorithms can be used to speed up the extraction of root traits from image data, but when applied to large numbers of images, there is a trade-off between time of processing the data and errors contained in the database. Conclusions: Scaling-up root phenotyping to large numbers of genotypes will require not only automation of sample preparation and sample handling, but also efficient algorithms for error detection for more reliable replacement of manual interventions

    Employment, Hours and Optimal Monetary Policy

    Get PDF
    We characterize optimal monetary policy in a New Keynesian search-and-matching model where multiple-worker firms satisfy demand in the short run by adjusting hours per worker. Imperfect product market competition and search frictions reduce steady state hours per worker below the efficient level. Bargaining results in a convex 'wage curve' linking wages to hours. Since the steady-state real marginal wage is low, wages respond little to hours. As a result, firms overuse the hours margin at the expense of hiring, which makes hours too volatile. The Ramsey planner uses inflation as a instrument to dampen inefficient hours fluctuations

    Empirical Evidence on Inflation and Unemployment in the Long Run

    Get PDF
    We examine the relationship between inflation and unemployment in the long run, using quarterly US data from 1952 to 2010. Using a band-pass filter approach, we find strong evidence that a positive relationship exists, where inflation leads unemployment by some 3 to 3 1/2 years, in cycles that last from 8 to 25 or 50 years. Our statistical approach is atheoretical in nature, but provides evidence in accordance with the predictions of Friedman (1977) and the recent New Monetarist model of Berentsen, Menzio, and Wright (2011): the relationship between inflation and unemployment is positive in the long run

    Silencing of Renal DNaseI in Murine Lupus Nephritis Imposes Exposure of Large Chromatin Fragments and Activation of Toll Like Receptors and the Clec4e

    Get PDF
    Recent studies demonstrate that transformation of mild lupus nephritis into end-stage disease is imposed by silencing of renal DNaseI gene expression in (NZBxNZW)F1 mice. Down-regulation of DNaseI results in reduced chromatin fragmentation, and in deposition of extracellular chromatin-IgG complexes in glomerular basement membranes in individuals that produce IgG anti-chromatin antibodies. The main focus of the present study is to describe the biological consequences of renal DNaseI shut-down and reduced chromatin fragmentation with a particular focus on whether exposed large chromatin fragments activate Toll like receptors and the necrosis-related Clec4e receptor in murine and human lupus nephritis. Furthermore, analyses where performed to determine if matrix metalloproteases are up-regulated as a consequence of chromatin-mediated Toll like receptors/Clec4e stimulation. Mouse and human mRNA expression levels of DNaseI, Toll like receptors 7–9, Clec4e, pro-inflammatory cytokines and MMP2/MMP9 were determined and compared with in situ protein expression profiles and clinical data. We demonstrate that exposure of chromatin significantly up-regulate Toll like receptors and Clec4e in mice, and also but less pronounced in patients with lupus nephritis treated with immunosuppresants. In conclusion, silencing of renal DNaseI gene expression initiates a cascade of inflammatory signals leading to progression of both murine and human lupus nephritis. Principal component analyses biplot of data from murine and human lupus nephrits demonstrate the importance of DNaseI gene shut down for progression of the organ disease

    Rare coding variants in ten genes confer substantial risk for schizophrenia

    Get PDF
    Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, PPeer reviewe
    • …
    corecore