13 research outputs found

    Immobilization Approach as a Creative Strategy to Remove Reactive Dye Red 195 and Cu<sup>2+</sup> Ions from Wastewater Using Environmentally Benign Geopolymer Cement

    No full text
    Water is a resource that is essential to almost all phases of industrial and manufacturing operations globally. It is important to handle the wastewater generated professionally. The textile industry is one of the major global polluters, with textile producers responsible for one-fifth of all industrial water pollution worldwide. In contrast, heavy metal contamination has developed into a critical, expanding global environmental problem. Geopolymer is a cementitious constituent of amorphous aluminosilicates derived from natural or industrial wastes. It is produced using the polymerization of aluminosilicate raw ingredients in an alkaline atmosphere. The aim of this study is to evaluate the application of eco-friendly geopolymer cement in the immobilization technique for the treatment of wastewater including heavy metals and dyes. Geopolymer cement pastes were organized using slag and fly ash as an aluminosilicate source, (1:1) sodium silicate and sodium hydroxide 15 wt.% as an alkali activator in the presence of organic dye pollutant reactive red 195, and Cu2+ ions (700 ppm) at different hydration times for up to 28 days. The physicochemical and mechanical properties of the prepared geopolymer cement mixes were further examined in relation to reactive dye pollutant and Cu2+ ions. The hydration characteristic was examined using the compressive strength and % of total porosity tests, as well as FTIR and XRD studies. Our findings support the 100% immobilization of both Cu2+ ions and organic dye pollutants in prepared geopolymer pastes for up to 28 days of hydration. Additionally, adding both Cu2+ ions and dye pollutants to the prepared geopolymer paste improves its mechanical properties, which is also supported by FTIR data. XRD and FTIR studies showed that the Cu2+ ions and dying bath effluent addition have no influence on the kind of hydration products that are produced. On the other hand, the geopolymerization process is negatively impacted by the presence of Cu2+ ions alone in the geopolymer paste

    Synthesis of Some Novel Biologically Active Disperse Dyes Derived from 4-Methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydro-pyridine-3-carbonitrile as Coupling Component and Their Colour Assessment on Polyester Fabrics

    No full text
    A series of novel azo-disperse dyes containing alkylhydrazonopyridinone structures were synthesized. 4-Methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (&lt;strong&gt;8&lt;/strong&gt;) is synthesized by one-pot synthesis using ethyl cyanoacetate, propylamine, and ethyl acetoacetate. Compound &lt;strong&gt;8&lt;/strong&gt; is then coupled with aromatic and heteroaromatic diazonium salts to afford the corresponding aryl- and heteroaryl-4-methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydropyridine-3-carbonitriles &lt;strong&gt;12a,b&lt;/strong&gt; and &lt;strong&gt;13a–c&lt;/strong&gt;. Structural assignments to the dyes were made using NMR spectroscopic methods. A high temperature dyeing method was employed to apply these dyes to polyester fabrics. Most of the dyed fabrics tested displayed very good light fastness levels and good wash fastness. Finally, the biological activity of the prepared dyes against Gram positive bacteria and Gram negative bacteria were evaluated

    Synthesis of Some Novel Pyrazolo[1,5-a]pyrimidine Derivatives and Their Application as Disperse Dyes

    No full text
    A series of novel monoazo-disperse dyes containing pyrazolo[1,5-a]pyrimidine structures were synthesized starting with the coupling reaction between ethyl cyanoacetate and 4-hydroxybenzenediazonium chloride, followed by treatment of the resulting hydrazone product with hydrazine hydrate. The pyrazolohydrazone 6 is then treated with either 2,4-pentandione and enaminonitrile or aryl-substituted enaminoketones to give the target pyrazolo[1,5-a]pyrimidine dyes 7 and 15a-d. Structural assignments to the dyes were made using NMR spectroscopic methods. A new high temperature method, using microwave heating, was employed to apply these dyes to polyester fibers. Most of the dyed fabrics tested displayed moderate light fastness and excellent washing fastness properties
    corecore