40 research outputs found

    Longitudinal microbiome investigation throughout prion disease course reveals pre- and symptomatic compositional perturbations linked to short-chain fatty acid metabolism and cognitive impairment in mice

    Get PDF
    Commensal intestinal bacteria shape our microbiome and have decisive roles in preserving host metabolic and immune homeostasis. They conspicuously impact disease development and progression, including amyloid-beta (Aβ) and alpha (α)-synuclein pathology in neurodegenerative diseases, conveying the importance of the brain–gut–microbiome axis in such conditions. However, little is known about the longitudinal microbiome landscape and its potential clinical implications in other protein misfolding disorders, such as prion disease. We investigated the microbiome architecture throughout prion disease course in mice. Fecal specimens were assessed by 16S ribosomal RNA sequencing. We report a temporal microbiome signature in prion disease and uncovered alterations in Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, and Muribaculaceae family members in this disease. Moreover, we determined the enrichment of Bilophila, a microorganism connected to cognitive impairment, long before the clinical manifestation of disease symptoms. Based on temporal microbial abundances, several associated metabolic pathways and resulting metabolites, including short-chain fatty acids, were linked to the disease. We propose that neuroinflammatory processes relate to perturbations of the intestinal microbiome and metabolic state by an interorgan brain–gut crosstalk. Furthermore, we describe biomarkers possibly suitable for early disease diagnostics and anti-prion therapy monitoring. While our study is confined to prion disease, our discoveries might be of equivalent relevance in other proteinopathies and central nervous system pathologies

    Comparison of the Gut Microbiome between Atopic and Healthy Dogs—Preliminary Data

    Full text link
    Human studies show that in addition to skin barrier and immune cell dysfunction, both the cutaneous and the gut microbiota can influence the pathogenesis of atopic diseases. There is currently no data on the gut-skin axis in allergic canines. Therefore, the aim of this study was to assess the bacterial diversity and composition of the gut microbiome in dogs with atopic dermatitis (AD). Stool samples from adult beagle dogs (n = 3) with spontaneous AD and a healthy control group (n = 4) were collected at Days 0 and 30. After the first sampling, allergic dogs were orally dosed on a daily basis with oclacitinib for 30 days, and then re-sampled. Sequencing of the V3–V4 region of the 16S rRNA gene was performed on the Illumina MiSeq platform and the data were analyzed using QIIME2. The atopic dogs had a significantly lower gut microbiota alpha-diversity than healthy dogs (p = 0.033). In healthy dogs, a higher abundance of the families Lachnospiraceae (p = 0.0006), Anaerovoracaceae (p = 0.006) and Oscillospiraceae (p = 0.021) and genera Lachnospira (p = 0.022), Ruminococcustorques group (p = 0.0001), Fusobacterium (p = 0.022) and Fecalibacterium (p = 0.045) was seen, when compared to allergic dogs. The abundance of Conchiformibius (p = 0.01), Catenibacterium spp. (p = 0.007), Ruminococcus gnavus group (p = 0.0574) and Megamonas (p = 0.0102) were higher in allergic dogs. The differences in alpha-diversity and on the compositional level remained the same after 1 month, adding to the robustness of the data. Additionally, we could also show that a 4-week treatment course with oclacitinib was not associated with changes in the gut microbiota diversity and composition in atopic dogs. This study suggests that alterations in the gut microbiota diversity and composition may be associated with canine AD. Large-scale studies preferably associated to a multi-omics approach and interventions targeting the gut microbiota are needed to confirm these results

    Unravelling the Impact of the Genetic Variant rs1042058 within the TPL2 Risk Gene Locus on Molecular and Clinical Disease Course Patients with Inflammatory Bowel Disease

    Full text link
    Background: The single nucleotide polymorphism (SNP) rs1042058 within the gene locus encoding tumor progression locus 2 (TPL2) has been recently identified as a risk gene for inflammatory bowel disease (IBD). TPL2 has been shown to regulate pro-inflammatory signaling and cytokine secretion, while inhibition of TPL2 decreases intestinal inflammation in vivo. However, the clinical and molecular implications of this disease-associated TPL2 variation in IBD patients have not yet been studied. Methods: We analyzed the impact of the IBD-associated TPL2 variation using clinical data of 2145 genotyped patients from the Swiss IBD Cohort Study (SIBDCS). Furthermore, we assessed the molecular consequences of the TPL2 variation in ulcerative colitis (UC) and Crohn's disease (CD) patients by real-time PCR and multiplex ELISA of colon biopsies or serum, respectively. Results: We found that presence of the SNP rs1042058 within the TPL2 gene locus results in significantly higher numbers of CD patients suffering from peripheral arthritis. In contrast, UC patients carrying this variant feature a lower risk for intestinal surgery. On a molecular level, the presence of the rs1042058 (GG) IBD-risk polymorphism in TPL2 was associated with decreased mRNA levels of IL-10 in CD patients and decreased levels of IL-18 in the intestine of UC patients. Conclusions: Our data suggest that the presence of the IBD-associated TPL2 variation might indicate a more severe disease course in CD patients. These results reveal a potential therapeutic target and demonstrate the relevance of the IBD-associated TPL2 SNP as a predictive biomarker in IBD

    Pulse Pressure Variation-Guided Fluid Therapy during Supratentorial Brain Tumour Excision: A Randomized Controlled Trial

    Get PDF
    BACKGROUND: Goal-directed fluid therapy (GDFT) improved patient outcomes in various surgical procedures; however, its role during mass brain resection was not well investigated. AIM: In this study, we evaluated a simple protocol based on intermittent evaluation of pulse pressure variation for guiding fluid therapy during brain tumour resection. METHODS: Sixty-one adult patients scheduled for supratentorial brain mass excision were randomized into either GDFT group (received intraoperative fluids guided by pulse pressure variation) and control group (received standard care). Both groups were compared according to the following: brain relaxation scale (BRS), mean arterial pressure, heart rate, urine output, intraoperative fluid intake, postoperative serum lactate, and length of hospital stay. RESULTS: Demographic data, cardiovascular data (mean arterial pressure and heart rate), and BRS were comparable between both groups. GDFT group received more intraoperative fluids {3155 (452) mL vs 2790 (443) mL, P = 0.002}, had higher urine output {2019 (449) mL vs 1410 (382) mL, P < 0.001}, and had lower serum lactate {0.9 (1) mmol versus 2.5 (1.1) mmol, P = 0.03} compared to control group. CONCLUSION: In conclusion, PPV-guided fluid therapy during supratentorial mass excision, increased intraoperative fluids, and improved peripheral perfusion without increasing brain swelling

    OGR1 (GPR68) and TDAG8 (GPR65) Have Antagonistic Effects in Models of Colonic Inflammation

    Get PDF
    G-protein-coupled receptors (GPRs), including pro-inflammatory ovarian cancer GPR1 (OGR1/GPR68) and anti-inflammatory T cell death-associated gene 8 (TDAG8/GPR65), are involved in pH sensing and linked to inflammatory bowel disease (IBD). OGR1 and TDAG8 show opposite effects. To determine which effect is predominant or physiologically more relevant, we deleted both receptors in models of intestinal inflammation. Combined Ogr1 and Tdag8 deficiency was assessed in spontaneous and acute murine colitis models. Disease severity was assessed using clinical scores. Colon samples were analyzed using quantitative polymerase chain reaction (qPCR) and flow cytometry (FACS). In acute colitis, Ogr1-deficient mice showed significantly decreased clinical scores compared with wildtype (WT) mice, while Tdag8-deficient mice and double knockout (KO) mice presented similar scores to WT. In Il-10-spontaneous colitis, Ogr1-deficient mice presented significantly decreased, and Tdag8-deficient mice had increased inflammation. In the Il10−/−^{-/-} × Ogr1−/−^{-/-} × Tdag8−/−^{-/-} triple KO mice, inflammation was significantly decreased compared with Tdag8−/−^{-/-}. Absence of Ogr1 reduced pro-inflammatory cytokines in Tdag8-deficient mice. Tdag8−/−^{-/-} had significantly more IFNγ+^{+} T-lymphocytes and IL-23 T-helper cells in the colon compared with WT. The absence of OGR1 significantly alleviates the intestinal damage mediated by the lack of functional TDAG8. Both OGR1 and TDAG8 represent potential new targets for therapeutic intervention

    Glycoprotein (GP)96 is essential for maintaining intestinal epithelial architecture by supporting its self-renewal capacity

    Full text link
    BACKGROUND & AIMS Glycoprotein (GP)96 is an endoplasmic reticulum (ER)-resident master chaperone for cell surface receptors including the Wnt co-receptors LRP5/6. Intestinal epithelial cells (IEC)-specific deletion of Gp96 is embryonically lethal. However, the role of GP96 in adult intestinal tissue and especially within the intestinal stem cell (ISC) niche has not been studied so far. Here, we investigated how GP96-loss interferes with intestinal homeostasis by compromising viability, proliferation and differentiation of IEC. METHODS Tamoxifen was used to induce Cre-mediated deletion of Gp96 in GP96-VillincreERT2^{creERT2} mice and intestinal organoids. With H&E- and immunofluorescence staining we assessed alterations in intestinal morphology and the presence and localization of IEC-types. Real-time PCR and Western blot analysis were performed to explore the molecular mechanisms underlying the severe phenotype of Gp96 KO mice and organoids. RESULTS IEC-specific deletion of Gp96 in adult mice resulted in a rapid degeneration of the stem cell niche, followed by a complete eradication of the epithelial layer and death within few days. These effects were due to severe defects in ISC renewal and premature ISC differentiation, which resulted from defective Wnt and Notch signaling. Furthermore, depletion of GP96 led to massive induction of ER stress. While effects on ISC renewal and adequate differentiation were partly reversed upon activation of Wnt/Notch signaling, viability could not be restored, indicating that reduced viability was mediated by other mechanisms. CONCLUSIONS Our work demonstrates that GP96 plays a fundamental role in regulating ISC fate and epithelial regeneration and is therefore indispensable for maintaining intestinal epithelial homeostasis

    Prospective observational study of the role of the microbiome in BCG responsiveness prediction (SILENT-EMPIRE): a study protocol

    Full text link
    INTRODUCTION The human microbiota, the community of micro-organisms in different cavities, has been increasingly linked with inflammatory and neoplastic diseases. While investigation into the gut microbiome has been robust, the urinary microbiome has only recently been described. Investigation into the relationship between bladder cancer (BC) and the bladder and the intestinal microbiome may elucidate a pathophysiological relationship between the two. The bladder or the intestinal microbiome or the interplay between both may also act as a non-invasive biomarker for tumour behaviour. While these associations have not yet been fully investigated, urologists have been manipulating the bladder microbiome for treatment of BC for more than 40 years, treating high grade non-muscle invasive BC (NMIBC) with intravesical BCG immunotherapy. Neither the association between the microbiome sampled directly from bladder tissue and the response to BCG-therapy nor the association between response to BCG-therapy with the faecal microbiome has been studied until now. A prognostic tool prior to initiation of BCG-therapy is still needed. METHODS AND ANALYSIS In patients with NMIBC bladder samples will be collected during surgery (bladder microbiome assessment), faecal samples (microbiome assessment), instrumented urine and blood samples (biobank) will also be taken. We will analyse the microbial community by 16S rDNA gene amplicon sequencing. The difference in alpha diversity (diversity of species within each sample) and beta diversity (change in species diversity) between BCG-candidates will be assessed. Subgroup analysis will be performed which will lead to the development of a clinical prediction model estimating risk of BCG-response. ETHICS AND DISSEMINATION The study has been approved by the Cantonal Ethics Committee Zurich (2021-01783) and it is being conducted in accordance with the Declaration of Helsinki and Good Clinical Practice. Study results will be disseminated through peer-reviewed journals and national and international scientific conferences. TRIAL REGISTRATION NUMBER NCT05204199

    Spermidine ameliorates colitis via induction of anti-inflammatory macrophages and prevention of intestinal dysbiosis

    Get PDF
    BACKGROUND AND AIMS: Exacerbated immune activation, intestinal dysbiosis, and a disrupted intestinal barrier are common features among inflammatory bowel disease (IBD) patients. The polyamine spermidine, which is naturally present in all living organisms, is an integral component of the human diet, and exerts beneficial effects in human diseases. Here, we investigated whether spermidine treatment ameliorates intestinal inflammation and offers therapeutic potential for IBD treatment. METHODS: We assessed the effect of oral spermidine administration on colitis severity in the T cell transfer colitis model in Rag2 -/- mice by analysis of endoscopy, histology, and molecular inflammation markers. The effects on the intestinal microbiome were determined by 16S sequencing of mouse feces. The impact on intestinal barrier integrity was evaluated in co-cultures of patient-derived macrophages with intestinal epithelial cells. RESULTS: Spermidine administration protected mice from intestinal inflammation in a dose-dependent manner. While T helper cell subsets remained unaffected, spermidine promoted anti-inflammatory macrophages and prevented the microbiome shift from Firmicutes and Bacteroides to Proteobacteria, maintaining a healthy gut microbiome. Consistent with spermidine as a potent activator of the anti-inflammatory molecule protein tyrosine phosphatase non-receptor type 2 (PTPN2), its colitis-protective effect was dependent on PTPN2 in intestinal epithelial cells and in myeloid cells. The loss of PTPN2 in epithelial and myeloid cells, but not in T cells, abrogated the barrier-protective, anti-inflammatory effect of spermidine and prevented the anti-inflammatory polarization of macrophages. CONCLUSION: Spermidine reduces intestinal inflammation by promoting anti-inflammatory macrophages, maintaining a healthy microbiome, and preserving epithelial barrier integrity in a PTPN2-dependent manner

    Endothelial Barrier Disruption by Lipid Emulsions Containing a High Amount of N3 Fatty Acids (Omegaven) but Not N6 Fatty Acids (Intralipid)

    Full text link
    Lipid emulsions are crucial for life-saving total parenteral nutrition (TPN). Their composition provides a high amount of essential fatty acids and calories for millions of patients with serious diseases. Nevertheless, several TPN-mediated side-effects have been reported in over 90% of patients. This project aimed to investigate the effect of a high amount of ω3 fatty acids (Omegaven®^{®}) emulsion vs. a high amount of ω6 fatty acids (Intralipid®^{®}) emulsions on the endothelial barrier function. EA.hy926 cell line was cultured and incubated with 0.01, 0.1, and 1 mM lipid emulsions. The influence of these lipid emulsions on the barrier function was assessed using ECIS technology, immunofluorescent microscopy, viability measurements by flow cytometry, multiplex cytokines analysis, and qRT-PCR. BODIPY staining confirmed the uptake of fatty acids by endothelial cells. ECIS measurements demonstrated that a high concentration of Omegaven®^{®} prevents barrier formation and impairs the barrier function by inducing cell detachment. Moreover, the expression of VE-cadherin and F-actin formation showed a reorganization of the cell structure within 2 h of 1 mM Omegaven®^{®} addition. Interestingly, the study's findings contradict previous studies and revealed that Omegaven®^{®} at high concentration, but not Intralipid, induces cell detachments, impairing endothelial cells' barrier function. In summary, our studies shed new light on the effect of lipid emulsions on the endothelium

    Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer

    Full text link
    BACKGROUND Integrin αvβ6 is a heterodimeric cell surface protein whose cellular expression is determined by the availability of the integrin β6 subunit (ITGB6). It is expressed at very low levels in most organs during tissue homeostasis but shows highly upregulated expression during the process of tumorigenesis in many cancers of epithelial origin. Notably, enhanced expression of integrin αvβ6 is associated with aggressive disease and poor prognosis in numerous carcinoma entities. Integrin αvβ6 is one of the major physiological activators of transforming growth factor-β (TGF-β), which has been shown to inhibit the antitumor T-cell response and cause resistance to immunotherapy in mouse models of colorectal and mammary cancer. In this study, we investigated the effect of ITGB6 expression and antibody-mediated integrin αvβ6 inhibition on the tumor immune response in colorectal cancer. METHODS Using orthotopic and heterotopic tumor cell injection, we assessed the effect of ITGB6 on tumor growth and tumor immune response in wild type mice, mice with defective TGF-β signaling, and mice treated with anti-integrin αvβ6 antibodies. To examine the effect of ITGB6 in human colorectal cancer, we analyzed RNAseq data from the colon adenocarcinoma dataset of The Cancer Genome Atlas (TCGA-COAD). RESULTS We demonstrate that expression of ITGB6 is an immune evasion strategy in colorectal cancer, causing inhibition of the antitumor immune response and resistance to immune checkpoint blockade therapy by activating latent TGF-β. Antibody-mediated inhibition of integrin αvβ6 sparked a potent cytotoxic T-cell response and overcame resistance to programmed cell death protein 1 (PD-1) blockade therapy in ITGB6 expressing tumors, provoking a drastic increase in anti-PD-1 treatment efficacy. Further, we show that the majority of tumors in patients with colorectal cancer express sufficient ITGB6 to provoke inhibition of the cytotoxic T-cell response, indicating that most patients could benefit from integrin αvβ6 blockade therapy. CONCLUSIONS These findings propose inhibition of integrin αvβ6 as a promising new therapy for colorectal cancer, which blocks tumor-promoting TGF-β activation, prevents tumor exclusion of cytotoxic T-cells and enhances the efficacy of immune checkpoint blockade therapy
    corecore