37 research outputs found
Incidence and clinical outcomes of nosocomial infections in patients presenting with STEMI complicated by cardiogenic shock in the United States
OBJECTIVES: This study addresses the incidence, trends, and impact of nosocomial infections (NI) on the outcomes of patients admitted with ST-segment elevation myocardial infarction (STEMI) and cardiogenic shock (STEMI-CS) using the United States National Inpatient Sample (NIS) database.
METHODS: We analyzed data from 105,184 STEMI-CS patients using the NIS database from the years 2005-2014. NI was defined as infections of more than or equal to three days, comprising of central line-associated bloodstream infection (CLABSI), urinary tract infection (UTI), hospital-acquired pneumonia (HAP), Clostridium difficile infection (CDI), bacteremia, and skin related infections. Outcomes of the impact of NI on STEMI-CS included in-hospital mortality, length of hospital stay (LOS) and costs. Significant associations of NI in patients admitted with STEMI-CS were also identified.
RESULTS: Overall, 19.1% (20,137) of patients admitted with STEMI-CS developed NI. Trends of NI have decreased from 2005-2014. The most common NI were UTI (9.2%), followed by HAP (6.8%), CLABSI (1.5%), bacteremia (1.5%), skin related infections (1.5%), and CDI (1.3%). The strongest association of developing a NI was increasing LOS (7-9 days; OR: 1.99; 95% CI: 1.75-2.26; \u3e9 days; OR: 4.51; 95% CI: 4.04-5.04 compared to 4-6 days as reference). Increased mortality risk among patients with NI was significant, especially those with sepsis-associated NI compared to those without sepsis (OR: 2.95; 95% CI: 2.72-3.20). Patients with NI were found to be associated with significantly longer LOS and higher costs, irrespective of percutaneous mechanical circulatory support placement.
CONCLUSIONS: NI were common among patients with STEMI-CS. Those who developed NI were at a greater risk of in-hospital mortality, increased LOS and costs
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Abstract 240: Factors Affecting Selection of TraineE for Neurointervention (FASTEN)
Introduction Neurointervention has become one of the most competitive specialties in the United States due to the limited number of training spots, and a larger pool of applicants from different backgrounds: neurosurgery, neurology, and radiology. The training standards are continuously updated to ensure solid learning experiences, which ultimately factors in better outcomes and fewer complications. There is a move towards a structured competency assessment of training requirements via collaboration among several professional societies. However, the substantial drivers of candidate selection by program directors (PDs) have not been fully established yet. The goal of our study is to investigate the factors influencing the selection of fellowship candidates. Methods We distributed a 52‐question electronic survey via REDCap to 93 PDs. The questionnaire was divided into 5 categories: program characteristics; candidate demographics; educational credentials; personal traits; and research and extracurricular activities. The PDs were then asked to rank 5 pre‐selected factors from across all 5 categories. Each category included a subset of multiple‐choice questions to be graded as indicated for each category. Characteristics for these categories were scored from a range of 1 through 10 and means with standard deviations (SD) were calculated for each characteristic. Results Of the 93 PDs surveyed, 55 PDs filled the survey with a response rate of 59.1%. As per the programs’ characteristics, Neurosurgery was the most involved specialty in running the training programs (69.1%), followed by neurology (38.2%), and radiology (30.9%). Most programs were based in academic hospitals (87.3%, n=48/55). The most important criterion for candidate’s demographic characteristics was the need for visa sponsorship, followed by career gap and number of years from graduation from residency program, as summarized in Figure 1A. The most important criteria for educational credentials were being a graduate from a neurosurgical residency program (5.4 ± 2.9), and the institution where the candidate’s residency training is/was based (5.4 ± 2.5). Regarding the candidate’s personal traits, assessment by faculty members at the interview had the highest score (8.9 ± 1). In terms of research and extracurricular activities, fluency in English had the highest score (7.2 ± 1.9), followed by the number of peer‐reviewed/PubMed‐indexed publications (6.4 ± 2.2). Ranking of a final set of 5 characteristics from across all categories is summarized in Figure 1B, with knowledge of the candidate being the single most important contributing factor. Conclusion Neurointerventional training is open to candidates in neurosurgery, neurology, and radiology. To our knowledge, our survey is the first to investigate the factors that might be implicated in the final decision made by PDs when choosing the future neurointerventional trainee, including demographic, educational, research and extracurricular activities
Correlation of genetic alterations by whole-exome sequencing with clinical outcomes of glioblastoma patients from the Lebanese population.
IntroductionGlioblastoma (GBM) is an aggressive brain tumor associated with high degree of resistance to treatment. Given its heterogeneity, it is important to understand the molecular landscape of this tumor for the development of more effective therapies. Because of the different genetic profiles of patients with GBM, we sought to identify genetic variants in Lebanese patients with GBM (LEB-GBM) and compare our findings to those in the Cancer Genome Atlas (TCGA).MethodsWe performed whole exome sequencing (WES) to identify somatic variants in a cohort of 60 patient-derived GBM samples. We focused our analysis on 50 commonly mutated GBM candidate genes and compared mutation signatures between our population and publicly available GBM data from TCGA. We also cross-tabulated biological covariates to assess for associations with overall survival, time to recurrence and follow-up duration.ResultsWe included 60 patient-derived GBM samples from 37 males and 23 females, with age ranging from 3 to 80 years (mean and median age at diagnosis were 51 and 56, respectively). Recurrent tumor formation was present in 94.8% of patients (n = 55/58). After filtering, we identified 360 somatic variants from 60 GBM patient samples. After filtering, we identified 360 somatic variants from 60 GBM patient samples. Most frequently mutated genes in our samples included ATRX, PCDHX11, PTEN, TP53, NF1, EGFR, PIK3CA, and SCN9A. Mutations in NLRP5 were associated with decreased overall survival among the Lebanese GBM cohort (p = 0.002). Mutations in NLRP5 were associated with decreased overall survival among the Lebanese GBM cohort (p = 0.002). EGFR and NF1 mutations were associated with the frontal lobe and temporal lobe in our LEB-GBM cohort, respectively.ConclusionsOur WES analysis confirmed the similarity in mutation signature of the LEB-GBM population with TCGA cohorts. It showed that 1 out of the 50 commonly GBM candidate gene mutations is associated with decreased overall survival among the Lebanese cohort. This study also highlights the need for studies with larger sample sizes to inform clinicians for better prognostication and management of Lebanese patients with GBM
Recommended from our members
Correlation of genetic alterations by whole-exome sequencing with clinical outcomes of glioblastoma patients from the Lebanese population
Introduction: Glioblastoma (GBM) is an aggressive brain tumor associated with high degree of resistance to treatment. Given its heterogeneity, it is important to understand the molecular landscape of this tumor for the development of more effective therapies. Because of the different genetic profiles of patients with GBM, we sought to identify genetic variants in Lebanese patients with GBM (LEB-GBM) and compare our findings to those in the Cancer Genome Atlas (TCGA). Methods: We performed whole exome sequencing (WES) to identify somatic variants in a cohort of 60 patient-derived GBM samples. We focused our analysis on 50 commonly mutated GBM candidate genes and compared mutation signatures between our population and publicly available GBM data from TCGA. We also cross-tabulated biological covariates to assess for associations with overall survival, time to recurrence and follow-up duration. Results: We included 60 patient-derived GBM samples from 37 males and 23 females, with age ranging from 3 to 80 years (mean and median age at diagnosis were 51 and 56, respectively). Recurrent tumor formation was present in 94.8% of patients (n = 55/58). After filtering, we identified 360 somatic variants from 60 GBM patient samples. After filtering, we identified 360 somatic variants from 60 GBM patient samples. Most frequently mutated genes in our samples included ATRX, PCDHX11, PTEN, TP53, NF1, EGFR, PIK3CA, and SCN9A. Mutations in NLRP5 were associated with decreased overall survival among the Lebanese GBM cohort (p = 0.002). Mutations in NLRP5 were associated with decreased overall survival among the Lebanese GBM cohort (p = 0.002). EGFR and NF1 mutations were associated with the frontal lobe and temporal lobe in our LEB-GBM cohort, respectively. Conclusions: Our WES analysis confirmed the similarity in mutation signature of the LEB-GBM population with TCGA cohorts. It showed that 1 out of the 50 commonly GBM candidate gene mutations is associated with decreased overall survival among the Lebanese cohort. This study also highlights the need for studies with larger sample sizes to inform clinicians for better prognostication and management of Lebanese patients with GBM.</p
The protracted waste crisis and physical health of workers in Beirut: a comparative cross-sectional study
Abstract Background Since July 2015, Lebanon has been experiencing a waste management crisis. Dumpsites in inhabited areas and waste burning have emerged due to the waste accumulation, further adding to the gravity of the situation. However, the association between the crisis and health of the population has not been scientifically reported. Methods A comparative cross-sectional study was conducted to assess whether exposure to open dumpsites and waste burning is associated with acute health symptoms. The study sample included 221 male workers between the ages of 18–60 years selected from two areas chosen based on their proximity to a garbage dumpsite and waste burning. 110 workers were exposed to a garbage dumpsite and waste burning, and 111 workers were not. Data were collected via a face-to-face interview using a newly developed validated structured questionnaire. Chi-square tests were used to check for statistically significant differences between exposure and covariates. Multivariable analyses using multiple logistic regression were used to compare health symptoms between exposed and unexposed workers adjusting for potential confounders. Results The prevalence of acute health symptoms was greater among the exposed workers than the non-exposed workers, including gastrointestinal, respiratory, dermatological and constitutional symptoms. Controlling for confounding variables, such as age, insurance, family support, residence near dumpsite, work site, and smoking, a minimum odds ratio (OR) of 4.30 was obtained when comparing the exposed population to those non-exposed. Conclusion The strong association between improper waste management and physical health calls for immediate attention by the government, stakeholders and community members to find optimal solutions for this waste management crisis and set immediate priority interventions such as regular waste collection, volume reduction and recycling performance improvement. However, the long recall period may have underestimated our results
The implementation of prioritization exercises in the development and update of health practice guidelines: A scoping review.
BACKGROUND:The development of trustworthy guidelines requires substantial investment of resources and time. This highlights the need to prioritize topics for guideline development and update. OBJECTIVE:To systematically identify and describe prioritization exercises that have been conducted for the purpose of the de novo development, update or adaptation of health practice guidelines. METHODS:We searched Medline and CINAHL electronic databases from inception to July 2019, supplemented by hand-searching Google Scholar and the reference lists of relevant studies. We included studies describing prioritization exercises that have been conducted during the de novo development, update or adaptation of guidelines addressing clinical, public health or health systems topics. Two reviewers worked independently and in duplicate to complete study selection and data extraction. We consolidated findings in a semi-quantitative and narrative way. RESULTS:Out of 33,339 identified citations, twelve studies met the eligibility criteria. All included studies focused on prioritizing topics; none on questions or outcomes. While three exercises focused on updating guidelines, nine were on de novo development. All included studies addressed clinical topics. We adopted a framework that categorizes prioritization into 11 steps clustered in three phases (pre-prioritization, prioritization and post-prioritization). Four studies covered more than half of the 11 prioritization steps across the three phases. The most frequently reported steps for generating initial list of topics were stakeholders' input (n = 8) and literature review (n = 7). The application of criteria to determine research priorities was used in eight studies. We used and updated a common framework of 22 prioritization criteria, clustered in 6 domains. The most frequently reported criteria related to the health burden of disease (n = 9) and potential impact of the intervention on health outcomes (n = 5). All the studies involved health care providers in the prioritization exercises. Only one study involved patients. There was a variation in the number and type of the prioritization exercises' outputs. CONCLUSIONS:This review included 12 prioritization exercises that addressed different aspects of priority setting for guideline development and update that can guide the work of researchers, funders, and other stakeholders seeking to prioritize guideline topics
Abstract Number ‐ 111: Endovascular embolization of traumatic vessel injury using n‐butyl cyanoacrylate: A case series
Introduction There is limited evidence on the use of N‐butyl cyanoacrylate (n‐BCA) liquid embolic in endovascular embolization of traumatic face and neck vessel injuries. We sought to investigate the safety and effectiveness of n‐BCA in treating traumatic vessel injuries. Methods In a prospectively maintained database, we retrospectively analyzed consecutive patients who presented with a vessel injury caused by either a penetrating or blunt injury in a large academic Level 1 trauma center between April 2021 and July 2022. We included patients aged ≥ 18 years with any vessel injury in the face and neck circulation. The primary endpoint was effectiveness of n‐BCA by immediate control of the active bleeding post‐embolization. Results A total of 10 patients required neuro‐endovascular embolization of traumatic vessel injury via n‐BCA. The mean age of patients was 41.10 (95%CI 28.41, 53.79), with a male predominance (n = 8, 80.0%). The mean Glasgow Coma Scale score on presentation was 10 (95% CI 6.20, 14.40). One patient had concomitant brain injury having subdural and subarachnoid hemorrhages. The mean score for Biffl classification was 5.00. Eight patients suffered penetrating gunshot wound injuries, and two patients suffered blunt injuries. Injured vessels included facial artery (n = 4, 40.0%), buccal branch artery (n = 2, 20.0%), internal maxillary artery (n = 2, 20.0%), cervical segment of the internal carotid artery (n = 1, 10.0%), and the V2 segment of the vertebral artery (n = 1, 10.0%). All patients were successfully treated with 2:1 n‐BCA to ethiodol with immediate extravasation control. Balloon guide catheter was used in 3 patients (30.0%). There was no recurrence of bleeding via vessel imaging or need for retreatment. One patient died in‐hospital (10.0%). Most patients were discharged home (n = 5, 50.0%), one discharged home with day rehab (n = 1, 10.0%), and one to an acute rehab facility (n = 1, 10.0%). One patient developed a right posterior cerebral artery territory infarct with hemorrhagic transformation post‐embolization. Conclusions To the best of our knowledge, this is the first study demonstrating the safety and effectiveness of n‐BCA liquid embolic in traumatic vessel injuries, especially penetrating gunshot wound injuries. Further research is needed to investigate the safety and efficacy in this population