10,850 research outputs found
Semi-classical scattering in two dimensions
The semi-classical limit of quantum-mechanical scattering in two dimensions
(2D) is developed. We derive the Wentzel-Kramers-Brillouin and Eikonal results
for 2D scattering. No backward or forward glory scattering is present in 2D.
Other phenomena, such as rainbow or orbiting do show up.Comment: 6 page
The Apollo spacecraft: A chronology. Volume 2: 8 November 1962 - 30 September 1964
A chronology of the Apollo spacecraft development and production program is presented. The subjects discussed are: (1) defining contractural relations, (2) developing hardware distinctions, and (3) developing software ground rules. Illustrations, drawings, and photographs are used extensively to supplement the technical writing. Descriptions of life support systems, communication equipment, propulsion systems, control devices, and spacecraft components are provided
High rate continuous synthesis of nanocrystalline materials in a colliding vapor stream of microdroplets
Progress in nanotechnology is driving the need of large scale synthesis of functional
nanomaterials. The lack of a workforce trained on process control and scale-up of nanomaterials
manufacturing, the gap between laboratories and economically practical nanofabrication and the
funding strain on the survivability of startup companies all contribute to the difficulties in scaling up
nanotechnologies and their commercialization [1,2]. We report here a high rate continuous synthesis of
functional inorganic nanomaterials using colliding vapor stream of reagents microdroplets
Exchange effects on electron scattering through a quantum dot embedded in a two-dimensional semiconductor structure
We have developed a theoretical method to study scattering processes of an
incident electron through an N-electron quantum dot (QD) embedded in a
two-dimensional (2D) semiconductor. The generalized Lippmann-Schwinger
equations including the electron-electron exchange interaction in this system
are solved for the continuum electron by using the method of continued
fractions (MCF) combined with 2D partial-wave expansion technique. The method
is applied to a one-electron QD case. Cross-sections are obtained for both the
singlet and triplet couplings between the incident electron and the QD electron
during the scattering. The total elastic cross-sections as well as the
spin-flip scattering cross-sections resulting from the exchange potential are
presented. Furthermore, inelastic scattering processes are also studied using a
multichannel formalism of the MCF.Comment: 11 pages, 4 figure
High rate continuous synthesis of nanocrystalline materials in a colliding vapor stream of microdroplets
Progress in nanotechnology is driving the need of large scale synthesis of functional
nanomaterials. The lack of a workforce trained on process control and scale-up of nanomaterials
manufacturing, the gap between laboratories and economically practical nanofabrication and the
funding strain on the survivability of startup companies all contribute to the difficulties in scaling up
nanotechnologies and their commercialization [1,2]. We report here a high rate continuous synthesis of
functional inorganic nanomaterials using colliding vapor stream of reagents microdroplets
A proposal of a UCN experiment to check an earthquake waves model
Elastic waves with transverse polarization inside incidence plane can create
longitudinal surface wave (LSW) after reflection from a free surface. At a
critical incidence angle this LSW accumulates energy density, which can be
orders of magnitude higher than energy density of the incident transverse wave.
A specially arranged vessel for storage of ultracold neutrons (UCN) can be used
to verify this effect.Comment: 8 pages 3 figures added a paragraph on vibrations along surface at
critical angl
Two-dimensional shear modulus of a Langmuir foam
We deform a two-dimensional (2D) foam, created in a Langmuir monolayer, by
applying a mechanical perturbation, and simultaneously image it by Brewster
angle microscopy. We determine the foam stress tensor (through a determination
of the 2D gas-liquid line tension, 2.35 0.4 pJm) and the
statistical strain tensor, by analyzing the images of the deformed structure.
We deduce the 2D shear modulus of the foam, .
The foam effective rigidity is predicted to be , which agrees with the value obtained in an independent mechanical measurement.Comment: submitted May 12, 2003 ; resubmitted Sept 9, 200
Quantum conductance problems and the Jacobi ensemble
In one dimensional transport problems the scattering matrix is decomposed
into a block structure corresponding to reflection and transmission matrices at
the two ends. For a random unitary matrix, the singular value probability
distribution function of these blocks is calculated. The same is done when
is constrained to be symmetric, or to be self dual quaternion real, or when
has real elements, or has real quaternion elements. Three methods are used:
metric forms; a variant of the Ingham-Seigel matrix integral; and a theorem
specifying the Jacobi random matrix ensemble in terms of Wishart distributed
matrices.Comment: 10 page
Nonperturbative interaction effects in the thermodynamics of disordered wires
We study nonperturbative interaction corrections to the thermodynamic
quantities of multichannel disordered wires in the presence of the Coulomb
interactions. Within the replica nonlinear -model (NLM)
formalism, they arise from nonperturbative soliton saddle points of the
NLM action. The problem is reduced to evaluating the partition function
of a replicated classical one dimensional Coulomb gas. The state of the latter
depends on two parameters: the number of transverse channels in the wire,
N_{ch}, and the dimensionless conductance, G(L_T), of a wire segment of length
equal to the thermal diffusion length, L_T. At relatively high temperatures,
, the gas is dimerized, i.e. consists of bound
neutral pairs. At lower temperatures, ,
the pairs overlap and form a Coulomb plasma. The crossover between the two
regimes occurs at a parametrically large conductance ,
and may be studied independently from the perturbative effects. Specializing to
the high temperature regime, we obtain the leading nonperturbative correction
to the wire heat capacity. Its ratio to the heat capacity for noninteracting
electrons, C_0, is .Comment: 18 page
- …