26 research outputs found
Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma
T-cell acute lymphoblastic leukemia and lymphoma (T-ALL/T-LBL) are aggressive hematological malignancies that are currently treated with high dose chemotherapy. Over the last years, the search towards novel and less toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell intrinsic properties of the tumor cell. However, non cell autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous IL7 can increase the expression of the oncogenic kinase PIM1 in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared to bulk non-treated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL PDX cells, ultimately resulting in non-cell autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7 responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy
EBV-Positive and EBV-Negative Posttransplant Diffuse Large B Cell Lymphomas Have Distinct Genomic and Transcriptomic Features
The molecular pathogenesis of posttransplant diffuse large B cell lymphoma (PT-DLBCL) is largely unknown. We have recently shown that Epstein-Barr virus-positive (EBV(+)) and -negative (EBV(-)) PT-DLBCL have distinct gene expression profiles, and the transcriptomic profile of EBV(-) PT-DLBCL is similar to that of DLBCL in immunocompetent individuals (IC-DLBCL). To validate these observations at the genomic level, we performed array-comparative genome hybridization (aCGH) analysis of 21 EBV(+) PT-DLBCL, 6 EBV(-) PT-DLBCL, and 11 control IC-DLBCL, and subsequently combined genomic and transcriptomic data. The analysis showed that EBV(+) and EBV(-) PT-DLBCL have distinct aCGH profiles and shared only one recurrent imbalance. EBV(-) PT-DLBCL, however, displayed at least 10 aberrations recurrent in IC-DLBCL, among which characteristic gain of 3/3q and 18q, and loss of 6q23/TNFAIP3 as well as 9p21/CDKN2A. The most prevalent aberration in EBV(+) PT-DLBCL was gain/amplification of 9p24.1 targeting PDCD1LG2/PDL2. Our data indicate that the FOXP1 oncogene and the tumor suppressor CDKNA2 implicated in EBV(-) DLBCL, do not play a critical role in the pathogenesis of EBV(+) PT-DLBCL. Altogether, genomic profiling of PT-/IC-DLBCL confirms that EBV(-) and EBV(+) PT-DLBCL are distinct entities, while EBV(-) PT-DLBCL has features in common with IC-DLBCL. These findings support the hypothesis that EBV(-) PT-DLBCL are de novo lymphomas in transplant recipients.status: publishe
Gene Expression Profiling Reveals Clear Differences Between EBV-Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders
Posttransplant patients are at risk of developing a potentially life-threatening posttransplantation lymphoproliferative disorder (PTLD), most often of diffuse large B cell lymphoma (DLBCL) morphology and associated with Epstein-Barr Virus (EBV) infection. The aim of this study was to characterize the clinicopathological and molecular-genetic characteristics of posttransplant DLBCL and to elucidate whether EBV(+) and EBV(-) posttransplant DLBCL are biologically different. We performed gene expression profiling studies on 48 DLBCL of which 33 arose posttransplantation (PT-DLBCL; 72% EBV+) and 15 in immunocompetent hosts (IC-DLBCL; none EBV+). Unsupervised hierarchical analysis showed clustering of samples related to EBV-status rather than immune status. Except for decreased T cell signaling these cases were inseparable from EBV(-) IC-DLBCL. In contrast, a viral response signature clearly segregated EBV(+) PT-DLBCL from EBV(-) PT-DLBCL and IC-DLBCL cases that were intermixed. The broad EBV latency profile (LMP1+/EBNA2+) was expressed in 59% of EBV(+) PT-DLBCL and associated with a more elaborate inflammatory response compared to intermediate latency (LMP1+/EBNA2-). Inference analysis revealed a role for innate and tolerogenic immune responses (including VSIG4 and IDO1) in EBV(+) PT-DLBCL. In conclusion we can state that the EBV signature is the most determining factor in the pathogenesis of EBV(+) PT-DLBCL.status: publishe
The spleen as a sanctuary site for residual leukemic cells following ABT-199 monotherapy in ETP-ALL.
B-cell lymphoma 2 (BCL-2) has recently emerged as a therapeutic target for early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL), a high-risk subtype of human T-cell ALL. The major clinical challenge with targeted therapeutics, such as the BCL-2 inhibitor ABT-199, is the development of acquired resistance. We assessed the in vivo response of luciferase-positive LOUCY cells to ABT-199 monotherapy and observed specific residual disease in the splenic microenvironment. Of note, these results were confirmed by using a primary ETP-ALL patient-derived xenograft. Splenomegaly has previously been associated with poor prognosis in diverse types of leukemia. However, the exact mechanism by which the splenic microenvironment alters responses to specific targeted therapies remains largely unexplored. We show that residual LOUCY cells isolated from the spleen microenvironment displayed reduced BCL-2 dependence, which was accompanied by decreased BCL-2 expression levels. Notably, this phenotype of reduced BCL-2 dependence could be recapitulated by using human splenic fibroblast coculture experiments and was confirmed in an in vitro chronic ABT-199 resistance model of LOUCY. Finally, single-cell RNA-sequencing was used to show that ABT-199 triggers transcriptional changes in T-cell differentiation genes in leukemic cells obtained from the spleen microenvironment. Of note, increased expression of CD1a and sCD3 was also observed in ABT199-resistant LOUCY clones, further reinforcing the idea that a more differentiated leukemic population might display decreased sensitivity toward BCL-2 inhibition. Overall, our data reveal the spleen as a site of residual disease for ABT-199 treatment in ETP-ALL and provide evidence for plasticity in T-cell differentiation as a mechanism of therapy resistance