8,050 research outputs found

    Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea

    Get PDF
    Concurrent measurements of the spectral absorption coefficient and photosynthetic pigmentation of natural particulates were performed to determine the principal pigments responsible for the absorption of spectral irradiance in seawater. The spectral absorption coefficient, Ap(Ξ»), was then analyzed by taking the second and fourth derivatives with respect to wavelength. The wavelength and magnitude of these derivative values provide useful information regarding the identification and quantification of phytoplankton pigments responsible for a given spectral signature. Linear relationships were examined and established between derivative values at selected wavelengths and concentrations of the major tetrapyrrole pigments, specifically chlorophylls a, b, and c. The correlation between derivative values near 526 nm and concentrations of photosynthetic carotenoids was poor and presumably caused by the broad absorption spectra of these pigments. A comparison of the measured particulate absorption coefficient with the absorption coefficient reconstructed for the phytoplankton component revealed that detritus can be a major source of light absorption. The method described here provides a rapid means of obtaining estimates of photosynthetic pigment concentrations in natural samples where absorption can be strongly influenced by detrital matter

    Hyperfine frequency shift in two-dimensional atomic hydrogen

    Full text link
    We propose the explanation of a surprisingly small hyperfine frequency shift in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced triplet-singlet transitions of atomic pairs in the fully spin-polarized sample are forbidden. The apparent nonzero shift is associated with the density-dependent wall shift of the hyperfine constant and the pressure shift due to the presence of H atoms in the hyperfine state aa not involved in the observed bβ†’cb\to c transition. The interaction of adsorbed atoms with one another effectively decreases the binding energy and, consequently, the wall shift by the amount proportional to their density. The pressure shift of the bβ†’cb\to c resonance comes from the fact that the impurity aa-state atoms interact differently with the initial bb-state and final cc-state atoms and is also linear in density. The net effect of the two contributions, both specific for 2D hydrogen, is comparable with the experimental observation. To our knowledge, this is the first mentioning of the density-dependent wall shift. We also show that the difference between the triplet and singlet scattering lengths of H atoms, atβˆ’as=30(5)a_t-a_s=30(5) pm, is exactly twice smaller than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101}, 263003 (2008).Comment: 4 pages, no figure

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6Γ—10146\times10^{14} cmβˆ’2^{-2}, yielding the value 1.2(1)Γ—10βˆ’151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let
    • …
    corecore