6 research outputs found

    Cell division in apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella

    Get PDF
    Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA) polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC). Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures

    Morphogenesis of Plasmodium zoites is uncoupled from tensile strength.

    Get PDF
    A shared feature of the motile stages (zoites) of malaria parasites is a cortical cytoskeletal structure termed subpellicular network (SPN), thought to define and maintain cell shape. Plasmodium alveolins comprise structural components of the SPN, and alveolin gene knockout causes morphological abnormalities that coincide with markedly reduced tensile strength of the affected zoites, indicating the alveolins are prime cell shape determinants. Here, we characterize a novel SPN protein of Plasmodium berghei ookinetes and sporozoites named G2 (glycine at position 2), which is structurally unrelated to alveolins. G2 knockout abolishes parasite transmission and causes zoite malformations and motility defects similar to those observed in alveolin null mutants. Unlike alveolins, however, G2 contributes little to tensile strength, arguing against a cause-effect relationship between tensile strength and cell shape. We also show that G2 null mutant sporozoites display an abnormal arrangement of their subpellicular microtubules. These results provide important new understanding of the factors that determine zoite morphogenesis, as well as the potential roles of the cortical cytoskeleton in gliding motility

    Actin Filament Polymerization Regulates Gliding Motility by Apicomplexan Parasites

    Get PDF
    Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa

    Daughter Cell Assembly in the Protozoan Parasite Toxoplasma gondii

    No full text
    The phylum Apicomplexa includes thousands of species of obligate intracellular parasites, many of which are significant human and/or animal pathogens. Parasites in this phylum replicate by assembling daughters within the mother, using a cytoskeletal and membranous scaffolding termed the inner membrane complex. Most apicomplexan parasites, including Plasmodium sp. (which cause malaria), package many daughters within a single mother during mitosis, whereas Toxoplasma gondii typically packages only two. The comparatively simple pattern of T. gondii cell division, combined with its molecular genetic and cell biological accessibility, makes this an ideal system to study parasite cell division. A recombinant fusion between the fluorescent protein reporter YFP and the inner membrane complex protein IMC1 has been exploited to examine daughter scaffold formation in T. gondii. Time-lapse video microscopy permits the entire cell cycle of these parasites to be visualized in vivo. In addition to replication via endodyogeny (packaging two parasites at a time), T. gondii is also capable of forming multiple daughters, suggesting fundamental similarities between cell division in T. gondii and other apicomplexan parasites
    corecore