16,891 research outputs found
Undamped electrostatic plasma waves
Electrostatic waves in a collision-free unmagnetized plasma of electrons with
fixed ions are investigated for electron equilibrium velocity distribution
functions that deviate slightly from Maxwellian. Of interest are undamped waves
that are the small amplitude limit of nonlinear excitations, such as electron
acoustic waves (EAWs). A deviation consisting of a small plateau, a region with
zero velocity derivative over a width that is a very small fraction of the
electron thermal speed, is shown to give rise to new undamped modes, which here
are named {\it corner modes}. The presence of the plateau turns off Landau
damping and allows oscillations with phase speeds within the plateau. These
undamped waves are obtained in a wide region of the plane
( being the real part of the wave frequency and the
wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs
based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that
corroborate the existence of these modes are described. It is also shown that
deviations caused by fattening the tail of the distribution shift roots off of
the thumb curve toward lower -values and chopping the tail shifts them
toward higher -values. In addition, a rule of thumb is obtained for
assessing how the existence of a plateau shifts roots off of the thumb curve.
Suggestions are made for interpreting experimental observations of
electrostatic waves, such as recent ones in nonneutral plasmas.Comment: 11 pages, 10 figure
Response to Comment on `Undamped electrostatic plasma waves' [Phys. Plasmas 19, 092103 (2012)]
Numerical and experimental evidence is given for the occurrence of the
plateau states and concomitant corner modes proposed in \cite{valentini12}. It
is argued that these states provide a better description of reality for small
amplitude off-dispersion disturbances than the conventional
Bernstein-Greene-Kruskal or cnoidal states such as those proposed in
\cite{comment
Vortex-to-Polarization Phase Transformation Path in Pb(ZrTi)O Nanoparticles
Phase transformation in finite-size ferroelectrics is of fundamental
relevance for understanding collective behaviors and balance of competing
interactions in low-dimensional systems. We report a first-principles effective
Hamiltonian study of vortex-to-polarization transformation in
Pb(ZrTi)O nanoparticles, caused by homogeneous electric
fields normal to the vortex plane. The transformation is shown to (1) follow an
unusual {\it macroscopic} path that is symmetry non-conforming and
characterized by the occurrence of a previously unknown structure as the
bridging phase; (2) lead to the discovery of a striking collective phenomenon,
revealing how ferroelectric vortex is annihilated {\it microscopically}.
Interactions underlying these behaviors are discussed
The response of hot wires in high Reynolds-number turbulent pipe flow
Issues concerning the accuracy of hot-wire measurements in turbulent pipe flow are addressed for pipe Reynolds numbers up to 6 × 106 and hot-wire Reynolds numbers up to Rew ap 250. These include the optimization of spatial and temporal resolution and the associated feature of signal-to-noise ratio. Very high wire Reynolds numbers enable the use of wires with reduced length-to-diameter ratios compared to those typical of atmospheric conditions owing to increased wire Nusselt numbers. Simulation of the steady-state heat balance for the wire and the unetched portion of wire are used to assess static end-conduction effects: they are used to calculate wire Biot numbers, \sqrt{c_0}l , and fractional end-conduction losses, σ, which confirm the 'conduction-only' theory described by Corrsin. They show that, at Rew ap 250, the wire length-to-diameter ratio can be reduced to about 50, while keeping \sqrt{c_0}l\gt3 and σ < 7% in common with accepted limits at Rew ap 3. It is shown that these limits depend additionally on the choice of wire material and the length of unetched wire. The dynamic effects of end-cooling are also assessed using the conduction-only theory
Expanded Very Large Arrays Observations of a Proto-Cluster of Molecular Gas-Rich Galaxies at z = 4.05
We present observations of the molecular gas in the GN20 proto-cluster of galaxies at z = 4.05 using the Expanded Very Large Array (EVLA). This group of galaxies is the ideal laboratory for studying the formation of massive galaxies via luminous, gas-rich starbursts within 1.6 Gyr of the big bang. We detect three galaxies in the proto-cluster in CO 2-1 emission, with gas masses (H_2) between 10^(10) and 10^(11) × (α/0.8) M_⊙. The emission from the brightest source, GN20, is resolved with a size ~2'' and has a clear north-south velocity gradient, possibly indicating ordered rotation. The gas mass in GN20 is comparable to the stellar mass (1.3 × 10^(11) × (α/0.8) M_⊙ and 2.3 × 10^(11) M_⊙, respectively), and the sum of gas plus stellar mass is comparable to the dynamical mass of the system (~3.4 × 10^(11)[sin (i)/sin (45°)]^(–2) M_⊙), within a 5 kpc radius. There is also evidence for a tidal tail extending another 2'' north of the galaxy with a narrow velocity dispersion. GN20 may be a massive, gas-rich disk that is gravitationally disturbed, but not completely disrupted. There is one Lyman-break galaxy (BD29079) in the GN20 proto-cluster with an optical spectroscopic redshift within our search volume, and we set a 3σ limit to the molecular gas mass of this galaxy of 1.1 × 10^(10) × (α/0.8) M_⊙
The micrometeoroid complex and evolution of the lunar regolith
The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids
Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats.
Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3-5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95-100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42-98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique
- …