516 research outputs found
Association of retinoic acid receptor genes with meningomyelocele.
BACKGROUND: Neural tube defects (NTDs) occur in as many as 0.5-2 per 1000 live births in the United States. One of the most common and severe neural tube defects is meningomyelocele (MM) resulting from failed closure of the caudal end of the neural tube. MM has been induced by retinoic acid teratogenicity in rodent models. We hypothesized that genetic variants influencing retinoic acid (RA) induction via retinoic acid receptors (RARs) may be associated with risk for MM.
METHODS: We analyzed 47 single nucleotide polymorphisms (SNPs) that span across the three retinoic acid receptor genes using the SNPlex genotyping platform. Our cohort consisted of 610 MM families.
RESULTS: One variant in the RARA gene (rs12051734), three variants in the RARB gene (rs6799734, rs12630816, rs17016462), and a single variant in the RARG gene (rs3741434) were found to be statistically significant at p \u3c 0.05.
CONCLUSION: RAR genes were associated with risk for MM. For all associated SNPs, the rare allele conferred a protective effect for MM susceptibility
Identification of Novel Candidate Risk Genes for Myelomeningocele Within the Glucose Homeostasis/Oxidative Stress and Folate/One-Carbon Metabolism Networks
BACKGROUND: Neural tube defects (NTDs) are the second most common complex birth defect, yet, our understanding of the genetic contribution to their development remains incomplete. Two environmental factors associated with NTDs are Folate and One Carbon Metabolism (FOCM) and Glucose Homeostasis and Oxidative Stress (GHOS). Utilizing next-generation sequencing of a large patient cohort, we identify novel candidate genes in these two networks to provide insights into NTD mechanisms.
METHODS: Exome sequencing (ES) was performed in 511 patients, born with myelomeningocele, divided between European American and Mexican American ethnicities. Healthy control data from the Genome Aggregation database were ethnically matched and used as controls. Rare, high fidelity, nonsynonymous predicted damaging missense, nonsense, or canonical splice site variants in independently generated candidate gene lists for FOCM and GHOS were identified. We used a gene-based collapsing approach to quantify mutational burden in case and controls, with the control cohort estimated using cumulative allele frequencies assuming Hardy-Weinberg equilibrium.
RESULTS: We identified 45 of 837 genes in the FOCM network and 22 of 568 genes in the GHOS network as possible NTD risk genes with p \u3c 0.05. No nominally significant risk genes were shared between ethnicities. Using a novel approach to mutational burden we identify 55 novel NTD risk associations.
CONCLUSIONS: We provide a means of utilizing large publicly available sequencing datasets as controls for sequencing projects examining rare disease. This approach confirmed existing risk genes for myelomeningocele and identified possible novel risk genes. Lastly, it suggests possible distinct genetic etiologies for this malformation between different ethnicities
Association of folate receptor (FOLR1, FOLR2, FOLR3) and reduced folate carrier (SLC19A1) genes with meningomyelocele.
BACKGROUND: Meningomyelocele (MM) results from lack of closure of the neural tube during embryologic development. Periconceptional folic acid supplementation is a modifier of MM risk in humans, leading toan interest in the folate transport genes as potential candidates for association to MM.
METHODS: This study used the SNPlex Genotyping (ABI, Foster City, CA) platform to genotype 20 single polymorphic variants across the folate receptor genes (FOLR1, FOLR2, FOLR3) and the folate carrier gene (SLC19A1) to assess their association to MM. The study population included 329 trio and 281 duo families. Only cases with MM were included. Genetic association was assessed using the transmission disequilibrium test in PLINK.
RESULTS: A variant in the FOLR2 gene (rs13908), three linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987), and two variants in the SLC19A1 gene (rs1888530 and rs3788200) were statistically significant for association to MM in our population.
CONCLUSION: This study involved the analyses of selected single nucleotide polymorphisms across the folate receptor genes and the folate carrier gene in a large population sample. It provided evidence that the rare alleles of specific single nucleotide polymorphisms within these genes appear to be statistically significant for association to MM in the patient population that was tested
GEM: Scalable and flexible gene-environment interaction analysis in millions of samples
MOTIVATION: Gene-environment interaction (GEI) studies are a general framework that can be used to identify genetic variants that modify the effects of environmental, physiological, lifestyle or treatment effects on complex traits. Moreover, accounting for GEIs can enhance our understanding of the genetic architecture of complex diseases and traits. However, commonly used statistical software programs for GEI studies are either not applicable to testing certain types of GEI hypotheses or have not been optimized for use in large samples.
RESULTS: Here, we develop a new software program, GEM (Gene-Environment interaction analysis in Millions of samples), which supports the inclusion of multiple GEI terms, adjustment for GEI covariates and robust inference, while allowing multi-threading to reduce computation time. GEM can conduct GEI tests as well as joint tests of genetic main and interaction effects for both continuous and binary phenotypes. Through simulations, we demonstrate that GEM scales to millions of samples while addressing limitations of existing software programs. We additionally conduct a gene-sex interaction analysis on waist-hip ratio in 352 768 unrelated individuals from the UK Biobank, identifying 24 novel loci in the joint test that have not previously been reported in combined or sex-specific analyses. Our results demonstrate that GEM can facilitate the next generation of large-scale GEI studies and help advance our understanding of the genetic architecture of complex diseases and traits.
AVAILABILITY AND IMPLEMENTATION: GEM is freely available as an open source project at https://github.com/large-scale-gxe-methods/GEM.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
An Approach to Identify Gene-Environment interactions and Reveal New Biological insight in Complex Traits
There is a long-standing debate about the magnitude of the contribution of gene-environment interactions to phenotypic variations of complex traits owing to the low statistical power and few reported interactions to date. to address this issue, the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium has been spearheading efforts to investigate G × E in large and diverse samples through meta-analysis. Here, we present a powerful new approach to screen for interactions across the genome, an approach that shares substantial similarity to the Mendelian randomization framework. We identify and confirm 5 loci (6 independent signals) interacted with either cigarette smoking or alcohol consumption for serum lipids, and empirically demonstrate that interaction and mediation are the major contributors to genetic effect size heterogeneity across populations. The estimated lower bound of the interaction and environmentally mediated heritability is significant (P \u3c 0.02) for low-density lipoprotein cholesterol and triglycerides in Cross-Population data. Our study improves the understanding of the genetic architecture and environmental contributions to complex traits
A Genome-Wide association Study Discovers 46 Loci of the Human Metabolome in the Hispanic Community Health Study/Study of Latinos
Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value \u3c 1.2 Ă— 1
Coronary Heart Disease and Ischemic Stroke Polygenic Risk Scores and atherosclerotic Cardiovascular Disease in a Diverse, Population-Based Cohort Study
The predictive ability of coronary heart disease (CHD) and ischemic stroke (IS) polygenic risk scores (PRS) have been evaluated individually, but whether they predict the combined outcome of atherosclerotic cardiovascular disease (ASCVD) remains insufficiently researched. It is also unclear whether associations of the CHD and IS PRS with ASCVD are independent of subclinical atherosclerosis measures. 7,286 White and 2,016 Black participants from the population-based Atherosclerosis Risk in Communities study who were free of cardiovascular disease and type 2 diabetes at baseline were included. We computed previously validated CHD and IS PRS consisting of 1,745,179 and 3,225,583 genetic variants, respectively. Cox proportional hazards models were used to test the association between each PRS and ASCVD, adjusting for traditional risk factors, ankle-brachial index, carotid intima media thickness, and carotid plaque. The hazard ratios (HR) for the CHD and IS PRS were significant with HR of 1.50 (95% CI: 1.36-1.66) and 1.31 (95% CI: 1.18-1.45) respectively for the risk of incident ASCVD per standard deviation increase in CHD and IS PRS among White participants after adjusting for traditional risk factors. The HR for the CHD PRS was not significant with an HR of 0.95 (95% CI: 0.79-1.13) for the risk of incident ASCVD in Black participants. The HR for the IS PRS was significant with an HR of 1.26 (95%CI: 1.05-1.51) for the risk of incident ASCVD in Black participants. The association of the CHD and IS PRS with ASCVD was not attenuated in White participants after adjustment for ankle-brachial index, carotid intima media thickness, and carotid plaque. The CHD and IS PRS do not cross-predict well, and predict better the outcome for which they were created than the composite ASCVD outcome. Thus, the use of the composite outcome of ASCVD may not be ideal for genetic risk prediction
The impact of multiple single day blood pressure readings on cardiovascular risk estimation: The Atherosclerosis Risk in Communities study
To determine the magnitude of change in estimated cardiovascular disease risk when multiple same day blood pressure measurements are used in estimating coronary heart disease (CHD), heart failure (HF) and stroke risks
A Polygenic Risk Score of atrial Fibrillation Improves Prediction of Lifetime Risk For Heart Failure
AIMS: Heart failure (HF) has shared genetic architecture with its risk factors: atrial fibrillation (AF), body mass index (BMI), coronary heart disease (CHD), systolic blood pressure (SBP), and type 2 diabetes (T2D). We aim to assess the association and risk prediction performance of risk-factor polygenic risk scores (PRSs) for incident HF and its subtypes in bi-racial populations.
METHODS AND RESULTS: Five PRSs were constructed for AF, BMI, CHD, SBP, and T2D in White participants of the Atherosclerosis Risk in Communities (ARIC) study. The associations between PRSs and incident HF and its subtypes were assessed using Cox models, and the risk prediction performance of PRSs was assessed using C statistics. Replication was performed in the ARIC study Black and Cardiovascular Health Study (CHS) White participants. In 8624 ARIC study Whites, 1922 (31% cumulative incidence) HF cases developed over 30 years of follow-up. PRSs of AF, BMI, and CHD were associated with incident HF (P \u3c 0.001), where PRS
CONCLUSIONS: The PR
- …