7 research outputs found

    Metabolomics Based Identification of SIRT5 and Protein Kinase C Epsilon Regulated Pathways in Brain

    Full text link
    The role of Sirtuins in brain function is emerging, yet little is known about SIRT5 in this domain. Our previous work demonstrates that protein kinase C epsilon (PKCε)-induced protection from focal ischemia is lost in SIRT5−/− mice. Thus, metabolic regulation by SIRT5 contributes significantly to ischemic tolerance. The aim of this study was to identify the SIRT5-regulated metabolic pathways in the brain and determine which of those pathways are linked to PKCε. Our results show SIRT5 is primarily expressed in neurons and endothelial cells in the brain, with mitochondrial and extra-mitochondrial localization. Pathway and enrichment analysis of non-targeted primary metabolite profiles from Sirt5−/− cortex revealed alterations in several pathways including purine metabolism (urea, adenosine, adenine, xanthine), nitrogen metabolism (glutamic acid, glycine), and malate-aspartate shuttle (malic acid, glutamic acid). Additionally, perturbations in β-oxidation and carnitine transferase (pentadecanoic acid, heptadecanoic acid) and glutamate transport and glutamine synthetase (urea, xylitol, adenine, adenosine, glycine, glutamic acid) were predicted. Metabolite changes in SIRT5−/− coincided with alterations in expression of amino acid (SLC7A5, SLC7A7) and glutamate (EAAT2) transport proteins as well as key enzymes in purine (PRPS1, PPAT), fatty acid (ACADS, HADHB), glutamine-glutamate (GAD1, GLUD1), and malate-aspartate shuttle (MDH1) metabolic pathways. Moreover, PKCε activation induced alternations in purine metabolites (urea, glutamine) that overlapped with putative SIRT5 pathways in WT but not in SIRT5−/− mice. Finally, we found that purine metabolism is a common metabolic pathway regulated by SIRT5, PKCε and ischemic preconditioning. These results implicate Sirt5 in the regulation of pathways central to brain metabolism, with links to ischemic tolerance

    Ischemic Preconditioning-Mediated Signaling Pathways Leading to Tolerance Against Cerebral Ischemia

    Full text link
    Cerebral ischemia, most notably in the form of stroke, is the leading cause of morbidity and mortality resulting in long-term disability in the USA. Approximately 800,000 strokes occur each year in the USA, and 87 % of all strokes in the world are caused by embolism, thrombosis, or systemic hemorrhage/hypoperfusion, all of which are a form of cerebral ischemia (Roger et al. 2011). The medical cost for the treatment of stroke in the USA was estimated to be $25 billion in 2007 (Roger et al. 2011). Due to this great burden, a fundamental understanding of cerebral ischemia and the inciting cellular dysfunction is imperative for the development of new therapies to combat this growing epidemic

    Protein Kinase C Epsilon Regulates Mitochondrial Pools of Nampt and NAD Following Resveratrol and Ischemic Preconditioning in the Rat Cortex

    Full text link
    Preserving mitochondrial pools of nicotinamide adenine dinucleotide (NAD) or nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in NAD production, maintains mitochondrial function and confers neuroprotection after ischemic stress. However, the mechanisms involved in regulating mitochondrial-localized Nampt or NAD have not been defined. In this study, we investigated the roles of protein kinase C epsilon (PKCɛ) and AMP-activated protein kinase (AMPK) in regulating mitochondrial pools of Nampt and NAD after resveratrol or ischemic preconditioning (IPC) in the cortex and in primary neuronal-glial cortical cultures. Using the specific PKCɛ agonist ψɛRACK, we found that PKCɛ induced robust activation of AMPK in vitro and in vivo and that AMPK was required for PKCɛ-mediated ischemic neuroprotection. In purified mitochondrial fractions, PKCɛ enhanced Nampt levels in an AMPK-dependent manner and was required for increased mitochondrial Nampt after IPC or resveratrol treatment. Analysis of intrinsic NAD autofluorescence using two-photon microscopy revealed that PKCɛ modulated NAD in the mitochondrial fraction. Further assessments of mitochondrial NAD concentrations showed that PKCɛ has a key role in regulating the mitochondrial NAD(+)/nicotinamide adenine dinucleotide reduced (NADH) ratio after IPC and resveratrol treatment in an AMPK- and Nampt-dependent manner. These findings indicate that PKCɛ is critical to increase or maintain mitochondrial Nampt and NAD after pathways of ischemic neuroprotection in the brain

    Metabolomics Based Identification of SIRT5 and Protein Kinase C Epsilon Regulated Pathways in Brain

    Full text link
    The role of Sirtuins in brain function is emerging, yet little is known about SIRT5 in this domain. Our previous work demonstrates that protein kinase C epsilon (PKCε)-induced protection from focal ischemia is lost in SIRT5 −/− mice. Thus, metabolic regulation by SIRT5 contributes significantly to ischemic tolerance. The aim of this study was to identify the SIRT5-regulated metabolic pathways in the brain and determine which of those pathways are linked to PKCε. Our results show SIRT5 is primarily expressed in neurons and endothelial cells in the brain, with mitochondrial and extra-mitochondrial localization. Pathway and enrichment analysis of non-targeted primary metabolite profiles from Sirt5 −/− cortex revealed alterations in several pathways including purine metabolism (urea, adenosine, adenine, xanthine), nitrogen metabolism (glutamic acid, glycine), and malate-aspartate shuttle (malic acid, glutamic acid). Additionally, perturbations in β-oxidation and carnitine transferase (pentadecanoic acid, heptadecanoic acid) and glutamate transport and glutamine synthetase (urea, xylitol, adenine, adenosine, glycine, glutamic acid) were predicted. Metabolite changes in SIRT5 −/− coincided with alterations in expression of amino acid (SLC7A5, SLC7A7) and glutamate (EAAT2) transport proteins as well as key enzymes in purine (PRPS1, PPAT), fatty acid (ACADS, HADHB), glutamine-glutamate (GAD1, GLUD1), and malate-aspartate shuttle (MDH1) metabolic pathways. Moreover, PKCε activation induced alternations in purine metabolites (urea, glutamine) that overlapped with putative SIRT5 pathways in WT but not in SIRT5 −/− mice. Finally, we found that purine metabolism is a common metabolic pathway regulated by SIRT5, PKCε and ischemic preconditioning. These results implicate Sirt5 in the regulation of pathways central to brain metabolism, with links to ischemic tolerance

    Protein kinase C epsilon delays latency until anoxic depolarization through arc expression and GluR2 internalization

    Full text link
    Global cerebral ischemia is a debilitating injury that damages the CA1 region of the hippocampus, an area important for learning and memory. Protein kinase C epsilon (PKCɛ) activation is a critical component of many neuroprotective treatments. The ability of PKCɛ activation to regulate AMPA receptors (AMPARs) remains unexplored despite the role of AMPARs in excitotoxicity after brain ischemia. We determined that PKCɛ activation increased expression of a protein linked to learning and memory, activity-regulated cytoskeleton-associated protein (arc). Also, arc is necessary for neuroprotection and confers protection through decreasing AMPAR currents via GluR2 internalization. In vivo, activation of PKCɛ increased arc expression through a BDNF/TrkB pathway, and decreased GluR2 mRNA levels. In hippocampal cultured slices, PKCɛ activation decreased AMPAR current amplitudes in an arc- and GluR2-dependent manner. Additionally, PKCɛ activation triggered an arc- and GluR2 internalization-dependent delay in latency until anoxic depolarization. Inhibiting arc also blocked PKCɛ-mediated neuroprotection against lethal oxygen and glucose deprivation. These data characterize a novel PKCɛ-dependent mechanism that for the first time defines a role for arc and AMPAR internalization in conferring neuroprotection

    Signaling pathways leading to ischemic mitochondrial neuroprotection

    Full text link
    There is extensive evidence that ischemic/reperfusion mediated mitochondrial dysfunction is a major contributor to ischemic damage. However data also indicates that mild ischemic stress induces mitochondrial dependent activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sub-injurious ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Current research demonstrates that mitochondria are not only the inducers of but are also an important target of ischemic preconditioning mediated protection. Numerous proteins and signaling pathways are activated by ischemic preconditioning which protect the mitochondria against ischemic damage. In this review we examine some of the proteins activated by ischemic precondition which counteracts the deleterious effects of ischemia/reperfusion thereby maintaining normal mitochondrial activity and lead to ischemic tolerance
    corecore