1,690 research outputs found

    Non-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1

    Get PDF
    We apply the transit light curve self-contamination technique of Morris et al. (2018) to search for the effect of stellar activity on the transits of the ultracool dwarf TRAPPIST-1 with 2018 Spitzer photometry. The self-contamination method fits the transit light curves of planets orbiting spotted stars, allowing the host star to be a source of contaminating positive or negative flux which influences the transit depths but not the ingress/egress durations. We find that none of the planets show statistically significant evidence for self-contamination by bright or dark regions of the stellar photosphere. However, we show that small-scale magnetic activity, analogous in size to the smallest sunspots, could still be lurking in the transit photometry undetected.Comment: Accepted for publication in ApJ

    Chromospheric Activity of HAT-P-11: an Unusually Active Planet-Hosting K Star

    Get PDF
    Kepler photometry of the hot Neptune host star HAT-P-11 suggests that its spot latitude distribution is comparable to the Sun's near solar maximum. We search for evidence of an activity cycle in the CaII H & K chromospheric emission SS-index with archival Keck/HIRES spectra and observations from the echelle spectrograph on the ARC 3.5 m Telescope at APO. The chromospheric emission of HAT-P-11 is consistent with a 10\gtrsim 10 year activity cycle, which plateaued near maximum during the Kepler mission. In the cycle that we observed, the star seemed to spend more time near active maximum than minimum. We compare the logRHK\log R^\prime_{HK} normalized chromospheric emission index of HAT-P-11 with other stars. HAT-P-11 has unusually strong chromospheric emission compared to planet-hosting stars of similar effective temperature and rotation period, perhaps due to tides raised by its planet.Comment: 16 pages, 8 figures; accepted to the Astrophysical Journa
    corecore