5 research outputs found

    Thyrotrophin-releasing hormone, vasoactive intestinal peptide, prolactin-releasing peptide and dopamine regulation of prolactin secretion by different lactotroph morphological subtypes in the rat.

    No full text
    In the male rat anterior pituitary, three morphological subtypes of cells secreting primarily prolactin (PRL) (lactotrophs) have been described. Type I contain predominantly large irregularly shaped granules, whereas type II and type III lactotrophs contain smaller spherical granules. We have previously shown that oestradiol and testosterone exert a rapid stimulatory effect selectively on type II lactotrophs but it is not known how the lactotroph subtypes respond to peptide secretagogues. We have therefore examined which cell subtype(s) release PRL in response to vasoactive intestinal peptide (VIP), thyrotrophin-releasing hormone (TRH) and prolactin-releasing peptide (PrRP-31). Pituitary segments were incubated in medium containing tannic acid (to capture exocytosis of secretory granules), either alone or with secretagogue peptide. VIP (1-10 nM), TRH (10 nM) and PrRP-31 (10 nM) all caused a significant increase (P < 0.05) in the amount of PRL granule exocytosis from type II and III lactotrophs, but had no effect on PRL exocytosis from type I. Dopamine (100 nM) inhibited basal exocytosis of immunoreactive (ir)-PRL from type I, II and III lactotrophs and PrRP-31-stimulated ir-PRL granule exocytosis from II and III lactotrophs. Treatment of lactating female rats with the dopamine D(2) receptor antagonist sulpiride (40 microg/kg) produced a significant increase (P < 0.05) in PRL granule exocytosis from type I and type III lactotrophs and a significant increase (P < 0.05) in the proportion of type I and II cells undergoing exocytosis of PRL. In conclusion, VIP, TRH and PrRP-31 selectively stimulate exocytosis from type II and III lactotrophs in the male rat, whereas all three lactotroph types are sensitive to dopamine inhibition of exocytosis in male and female rats

    Evidence for a role of the adenosine 5'-triphosphate-binding cassette transporter A1 in the externalization of annexin I from pituitary folliculo-stellate cells.

    No full text
    Annexin 1 (ANXA1) has a well-demonstrated role in early delayed inhibitory feedback of glucocorticoids in the pituitary. ANXA1 is located in folliculo-stellate (FS) cells, and glucocorticoids act on these cells to externalize and stimulate the synthesis of ANXA1. However, ANXA1 lacks a signal sequence so the mechanism by which ANXA1 is externalized from FS cells was unknown and has been investigated. The ATP-binding cassette (ABC) transporters are a large group of transporters with varied roles that include the externalization of proteins. Glucocorticoid-induced externalization of ANXA1 from an FS cell line (TtT/GF) and rat anterior pituitary was blocked by glyburide, which inhibits ABC transporters. Glyburide also blocked the glucocorticoid inhibition of forskolin-stimulated ACTH release from pituitary tissue in vitro. RT-PCR revealed mRNA and Western blotting demonstrated protein for the ATP binding cassette A1 (ABCA1) transporter in mouse FS, TtT/GF, and A549 lung adenocarcinoma cells from which glucocorticoids also induce externalization of ANXA1. In TtT/GF cells, immunofluorescence labeling revealed a near total colocalization of cell surface ANXA1 and ABCA1. We conclude that ANXA1, which mediates the early delayed feedback of glucocorticoids in the anterior pituitary, is externalized from FS cells by an ABC transporter and that the ABCA1 transporter is a likely candidate

    Steroid effects on secretion from subsets of lactotrophs: role of folliculo-stellate cells and annexin 1.

    No full text
    Prolactin secretion is controlled by the hypothalamus, and by circulating steroids; oestrogens stimulate, but glucocorticoids inhibit prolactin release. Lactotrophs express intracellular receptors for oestrogens, but apparently not glucocorticoids. Therefore, a genomic effect of oestrogens could be direct, but that of glucocorticoids appears to be indirect. Lactotrophs are not a homogeneous cell population: some have large irregular dense-cored vesicles, others have small round vesicles, but the functional significance of this inhomogeneity is far from clear. Oestradiol and testosterone can stimulate rapid release of prolactin selectively from type II lactotrophs characterised by small round vesicles. Progesterone and other steroids do not exert this effect, which results from a non-genomic action of oestradiol and testosterone. Glucocorticoid inhibition of secretagogue-induced prolactin secretion is mimicked by annexin 1 (lipocortin 1), a protein induced by glucocorticoids in the pituitary and many other tissues, and can be blocked by annexin 1 immunoneutralisation and antisense. Glucocorticoid inhibition of ACTH and growth hormone secretion also involves annexin 1. Pituitary annexin 1 is located in folliculo-stellate cells; these express glucocorticoid receptors, and glucocorticoids induce annexin-1 synthesis. Annexin 1 is externalised from folliculo-stellate cells in response to glucocorticoids, despite the fact that it lacks a secretory signal sequence and is not packaged in vesicles. Inhibition of annexin 1 externalisation by glyburide suggests involvement of an ABC (ATP-binding cassette) transporter in externalisation. Both oestradiol and glucocorticoids therefore influence the secretion of prolactin by novel direct and indirect mechanisms, in addition to their much better understood effects on transcription via classical intracellular steroid receptors
    corecore