55,145 research outputs found
Polymerizable disilanols having in-chain perfluoroalkyl groups
Disilanols containing in-chain perfluoroalkyl and aromatic groups and the process by which they were prepared are discussed. The disilanols, when reacted with a diaminosilane and cured, produce polymeric material resistant to hydrocarbon fuels and stable at elevated temperatures
Thermionic performance of a variable-gap cesium diminiode with a 110-single-crystal-tungsten emitter and a polycrystalline-niobium collector
Results from tests of the first variable-gap diminiode at an initial interelectrode spacing of 0.23 millimeter indicate sharply defined, relatively low ultimate power points. This characteristic supports the value of the diminiode as a well-controlled tool for thermionic-conversion research and development
Identification and nucleotide sequences of mxaA, mxaC, mxaK, mxaL, and mxaD genes from Methylobacterium extorquens AM1
The DNA sequence for a 4.4-kb HindIII-XhoI Methylobacterium extorquens AM1 DNA fragment that is known to contain three genes (mxaAKL) involved in incorporation of calcium into methanol dehydrogenase (I. W. Richardson and C. Anthony, Biochem. J. 287:709-7115, 1992) was determined. Five complete open reading frames and two partial open reading frames were found, suggesting that this region contains previously unidentified genes. A combination of sequence analysis, mutant complementation data, and gene expression studies showed that these genes correspond to mxaSACKLDorf1. Of the three previously unidentified genes (mxaC, mxaD, and orf1), mutant complementation studies showed that mxaC is required for methanol oxidation, while the function of the other two genes is still unknown
Operating experiences of retardant bombers during firefighting operations
Data are presented on operational practices and maneuver accelerations experienced by two Douglas DC-6B airplanes converted to retardant bombers and used in firefighting operations. The data cover two fire seasons in the mountainous regions of the northwestern United States
Assessment of Variable-cycle Engines for Mach 2.7 Supersonic Transports
Three proposed SCAR propulsion systems in terms of aircraft range for a fixed payload and take-off gross weight with a design cruise Mach number 2.7 are evaluated. The effects of various noise and operational restraints are determined and sensitivities to some of the more important performance variables are presented for the most probable design noise and operational restraint case. Critical areas requiring new or improved technology for each cycle are delineated
Diminiode thermionic conversion with 111-iridium electrodes
Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA
Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes
Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given
Coal-shale interface detection system
A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through
- …