136 research outputs found

    Geospatial and statistical foundations for streamflow synthesis in West Virginia

    Get PDF
    Streamflow values must be synthesized for locations where flow measurement stations, in applications such as the West Virginia SWAP program, are lacking or where only intermittent measurements are available (West Virginia Department of Health and Human Resources, 1999). This research describes an effort to improve upon the current synthetic streamflow model by incorporating geomorphic, geologic, and hydrogeologic measurements. Principal components analysis (PCA) was used to derive a set of master variables that characterize stream flow in West Virginia based on historical data from 29 watersheds. The relationships between variables affecting stream flow were also analyzed using cluster and correlation analysis to derive an optimum set of variables for predicting stream flow in the state. Based on this analysis, there are two categories of watersheds in West Virginia. The first is strongly correlated to climatic variables: precipitation, temperature, elevation, and groundwater recharge. The second is strongly correlated to two geomorphic variables; watershed slope, and percentage of forested area. The spatial distribution of the watershed groupings shows that watersheds dominated by the climatic component are located along the Allegheny Front while watersheds dominated by the geomorphic component are located in the Allegheny plateau and Valley and Ridge physiographic provinces

    Effect of Thromboprophylaxis on Clinical Outcomes After COVID-19 Hospitalization

    Get PDF
    BACKGROUND: Patients hospitalized with COVID-19 have an increased incidence of thromboembolism. The role of extended thromboprophylaxis after hospital discharge is unclear. OBJECTIVE: To determine whether anticoagulation is superior to placebo in reducing death and thromboembolic complications among patients discharged after COVID-19 hospitalization. DESIGN: Prospective, randomized, double-blind, placebo-controlled clinical trial. (ClinicalTrials.gov: NCT04650087). SETTING: Done during 2021 to 2022 among 127 U.S. hospitals. PARTICIPANTS: Adults aged 18 years or older hospitalized with COVID-19 for 48 hours or more and ready for discharge, excluding those with a requirement for, or contraindication to, anticoagulation. INTERVENTION: 2.5 mg of apixaban versus placebo twice daily for 30 days. MEASUREMENTS: The primary efficacy end point was a 30-day composite of death, arterial thromboembolism, and venous thromboembolism. The primary safety end points were 30-day major bleeding and clinically relevant nonmajor bleeding. RESULTS: Enrollment was terminated early, after 1217 participants were randomly assigned, because of a lower than anticipated event rate and a declining rate of COVID-19 hospitalizations. Median age was 54 years, 50.4% were women, 26.5% were Black, and 16.7% were Hispanic; 30.7% had a World Health Organization severity score of 5 or greater, and 11.0% had an International Medical Prevention Registry on Venous Thromboembolism risk prediction score of greater than 4. Incidence of the primary end point was 2.13% (95% CI, 1.14 to 3.62) in the apixaban group and 2.31% (CI, 1.27 to 3.84) in the placebo group. Major bleeding occurred in 2 (0.4%) and 1 (0.2%) and clinically relevant nonmajor bleeding occurred in 3 (0.6%) and 6 (1.1%) apixaban-treated and placebo-treated participants, respectively. By day 30, thirty-six (3.0%) participants were lost to follow-up, and 8.5% of apixaban and 11.9% of placebo participants permanently discontinued the study drug treatment. LIMITATIONS: The introduction of SARS-CoV-2 vaccines decreased the risk for hospitalization and death. Study enrollment spanned the peaks of the Delta and Omicron variants in the United States, which influenced illness severity. CONCLUSION: The incidence of death or thromboembolism was low in this cohort of patients discharged after hospitalization with COVID-19. Because of early enrollment termination, the results were imprecise and the study was inconclusive. PRIMARY FUNDING SOURCE: National Institutes of Health

    Ploidy of Cell-Sorted Trophic and Cystic Forms of Pneumocystis carinii

    Get PDF
    Once regarded as an AIDS-defining illness, Pneumocystis pneumonia (PcP) is nowadays prevailing in immunocompromised HIV-negative individuals such as patients receiving immunosuppressive therapies or affected by primary immunodeficiency. Moreover, Pneumocystis clinical spectrum is broadening to non-severely-immunocompromised subjects who could be colonized by the fungus while remaining asymptomatic for PcP, thus being able to transmit the infection by airborne route to susceptible hosts. Although the taxonomical position of the Pneumocystis genus has been clarified, several aspects of its life cycle remain elusive such as its mode of proliferation within the alveolus or its ploidy level. As no long-term culture model exists to grow Pneumocystis organisms in vitro, an option was to use a model of immunosuppressed rat infected with Pneumocystis carinii and sort life cycle stage fractions using a high-through-put cytometer. Subsequently, ploidy levels of the P. carinii trophic and cystic form fractions were measured by flow cytometry. In the cystic form, eight contents of DNA were measured thus strengthening the fact that each mature cyst contains eight haploid spores. Following release, each spore evolves into a trophic form. The majority of the trophic form fraction was haploid in our study. Some less abundant trophic forms displayed two contents of DNA indicating that they could undergo (i) mating/fusion leading to a diploid status or (ii) asexual mitotic division or (iii) both. Even less abundant trophic forms with four contents of DNA were suggestive of mitotic divisions occurring following mating in diploid trophic forms. Of interest, was the presence of trophic forms with three contents of DNA, an unusual finding that could be related to asymmetrical mitotic divisions occurring in other fungal species to create genetic diversity at lower energetic expenses than mating. Overall, ploidy data of P. carinii life cycle stages shed new light on the complexity of its modes of proliferation

    A systematic review of shared decision making interventions in chronic conditions: a review protocol

    Get PDF
    Background: Chronic conditions are a major source of morbidity, mortality and cost worldwide. Shared decision making is one way to improve care for patients with chronic conditions. Although it has been widely studied, the effect of shared decision making in the context of chronic conditions is unknown. Methods/Design: We will perform a systematic review with the objective of determining the effectiveness of shared decision making interventions for persons diagnosed with chronic conditions. We will search the following databases for relevant articles: PubMed, Scopus, Ovid MEDLINE, Ovid EMBASE, Ovid EBM Reviews CENTRAL, CINAHL, and Ovid PsycInfo. We will also search clinical trial registries and contact experts in the field to identify additional studies. We will include randomized controlled trials studying shared decision making interventions in patients with chronic conditions who are facing an actual decision. Shared decision making interventions will be defined as any intervention aiming to facilitate or improve patient and/or clinician engagement in a decision making process. We will describe all studies and assess their quality. After adjusting for missing data, we will analyze the effect of shared decision making interventions on outcomes in chronic conditions overall and stratified by condition. We will evaluate outcomes according to an importance ranking informed by a variety of stakeholders. We will perform several exploratory analyses including the effect of author contact on the estimates of effect. Discussion: We anticipate that this systematic review may have some limitations such as heterogeneity and imprecision; however, the results will contribute to improving the quality of care for individuals with chronic conditions and facilitate a process that allows decision making that is most consistent with their own values and preferences

    Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly

    Get PDF
    Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
    corecore