312 research outputs found

    Many quantitative trait loci for feather growth in an F broiler × layer cross collocate with body weight loci

    Get PDF
    1. A genome-wide scan of 467 F progeny of a broiler x layer cross was conducted to identify quantitative trait loci (QTL) affecting the rate of growth of the tail, wing and back feathers, and the width of the breast feather tract, at three weeks of age. 2. Correlations between the traits ranged from 0·36 to 0·61. Males had longer tail and wing feathers and shorter back feathers than females. Breast feather tract width was greater in females than males. 3. QTL effects were generally additive and accounted for 11 to 45% of sex average feather lengths of the breeds, and 100% of the breast feather tract width. Positive and negative alleles were inherited from both lines, whereas the layer allele was larger than the broiler allele after adjusting for body weight. 4. A total of 4 genome-significant and 4 suggestive QTL were detected. At three or 6 weeks of age, 5 of the QTL were located in similar regions as QTL for body weight. 5. Analysis of a model with body weight at three weeks as a covariate identified 5 genome significant and 6 suggestive QTL, of which only two were coincident with body weight QTL. One QTL for feather length at 148 cM on GGA1 was identified at a similar location in the unadjusted analysis. 6. The results suggest that the rate of feather growth is largely controlled by body weight QTL, and that QTL specific for feather growth also exist

    "More than just a medical student”: a mixed methods exploration of a structured volunteering programme for undergraduate medical students

    Get PDF
    Background As a result of the COVID-19 pandemic Imperial College School of Medicine developed a structured volunteering programme involving 398 medical students, across eight teaching hospitals. This case study aims to illuminate the experiences of volunteers, mechanisms of learning and draw lessons for future emergencies and curriculum improvements. Methods Using an illuminative approach to evaluation we invited all volunteers and supervisors to complete a mixed-methods survey. This gathered nominal demographic information and qualitative data related to motivations, experiences, insights into learning, processual and contextual factors. Qualitative responses were coded, thematically organised, and categorised into an overarching framework. Mann-Whitney U tests determined whether volunteers’ overall rating of the experience varied according to demographic features and modulating factors. Spearman’s rank correlation assessed the relationship between aspects of induction and supervision, and overall volunteering rating. Follow up interviews were carried out with students to check back findings and co-create conclusions. Results Modulating factors identified through thematic analysis include altruistic motivation, engaged induction and supervision, feeling valued, having responsibility and freedom from the formal curriculum. Statistically significant positive correlations are identified between volunteers overall rating and being a year 1 or 2 student, ability to discuss role and ask questions during induction, being male, and having regular meetings and role support from supervisors. Qualitatively reported impacts include improved wellbeing, valuable contribution to service and transformative learning. Transformative learning effects included reframing of role within the multidisciplinary team, view of effective learning and view of themselves as competent clinicians. The number of weeks, number of shifts per week, and the role the volunteers performed, did not significantly impact experiences. Conclusions While acknowledging the uniqueness of the situation presented by the first wave COVID-19, we suggest the features of a successful service-learning programme include: a learner-centred induction, engaged and appreciative supervisors, and the entrustment of students with meaningful work with reciprocal benefits to services. Programmes in similar settings may find that 1) volunteering is best appreciated in years 1 or 2, 2) students with altruistic motivations and meaningful work may flourish without formal outcomes and assessments, and 3) that female volunteers may experience emergency learning differently to men

    The flood pulse in a semi-arid riparian forest:metabolic and biogeochemical responses to inter-flood interval

    Get PDF
    Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function

    Regulation of Human PINK1 ubiquitin kinase by Serine167, Serine228 and Cysteine412 phosphorylation.

    Get PDF
    Loss-of-function mutations in the human PINK1 kinase (hPINK1) are causative of early-onset Parkinson’s disease (PD). Activation of hPINK1 induces phosphorylated ubiquitin to initiate removal of damaged mitochondria by autophagy. Previously we solved the structure of the insect PINK1 orthologue, Tribolium castaneum PINK1, and showed that autophosphorylation of Ser205 was critical for ubiquitin interaction and phosphorylation (Kumar, Tamjar, Waddell et al., 2017). Here we report new findings on the regulation of hPINK1 by phosphorylation. We reconstitute E. coli expressed hPINK1 activity in vitro by direct incorporation of phosphoserine at the equivalent site Serine 228 (pSer228), providing direct evidence for a role for Ser228 phosphorylation in hPINK1 activation. Furthermore, using mass spectrometry, we identify six novel Ser/Thr autophosphorylation sites including regulatory Serine167 phosphorylation (pSer167), which in addition to pSer228 is required for ubiquitin recognition and phosphorylation. Strikingly, we also detect phosphorylation of a conserved Cysteine412 (pCys412) residue in the hPINK1 activation segment. Structural modelling suggests that pCys412 inhibits ubiquitin recognition and we demonstrate that mutation of Cys412 to Ala renders hPINK1 more active towards ubiquitin when expressed in human cells. These results outline new insights into hPINK1 activation by pSer167 and pSer228 and a novel inhibitory mechanism mediated by pCys412. These findings will aid in the development of small molecule activators of hPINK1

    Vocalisations of Killer Whales (Orcinus orca) in the Bremer Canyon, Western Australia

    Get PDF
    To date, there has been no dedicated study in Australian waters on the acoustics of killer whales. Hence no information has been published on the sounds produced by killer whales from this region. Here we present the first acoustical analysis of recordings collected off the Western Australian coast. Underwater sounds produced by Australian killer whales were recorded during the months of February and March 2014 and 2015 in the Bremer Canyon in Western Australia. Vocalisations recorded included echolocation clicks, burst-pulse sounds and whistles. A total of 28 hours and 29 minutes were recorded and analysed, with 2376 killer whale calls (whistles and burst-pulse sounds) detected. Recordings of poor quality or signal-to-noise ratio were excluded from analysis, resulting in 142 whistles and burst-pulse vocalisations suitable for analysis and categorisation. These were grouped based on their spectrographic features into nine Bremer Canyon (BC) "call types". The frequency of the fundamental contours of all call types ranged from 600 Hz to 29 kHz. Calls ranged from 0.05 to 11.3 seconds in duration. Biosonar clicks were also recorded, but not studied further. Surface behaviours noted during acoustic recordings were categorised as either travelling or social behaviour. A detailed description of the acoustic characteristics is necessary for species acoustic identification and for the development of passive acoustic tools for population monitoring, including assessments of population status, habitat usage, migration patterns, behaviour and acoustic ecology. This study provides the first quantitative assessment and report on the acoustic features of killer whales vocalisations in Australian waters, and presents an opportunity to further investigate this little-known population

    Regulation of Human PINK1 ubiquitin kinase by Serine167, Serine228 and Cysteine412 phosphorylation.

    Get PDF
    Loss-of-function mutations in the human PINK1 kinase (hPINK1) are causative of early-onset Parkinson’s disease (PD). Activation of hPINK1 induces phosphorylated ubiquitin to initiate removal of damaged mitochondria by autophagy. Previously we solved the structure of the insect PINK1 orthologue, Tribolium castaneum PINK1, and showed that autophosphorylation of Ser205 was critical for ubiquitin interaction and phosphorylation (Kumar, Tamjar, Waddell et al., 2017). Here we report new findings on the regulation of hPINK1 by phosphorylation. We reconstitute E. coli expressed hPINK1 activity in vitro by direct incorporation of phosphoserine at the equivalent site Serine 228 (pSer228), providing direct evidence for a role for Ser228 phosphorylation in hPINK1 activation. Furthermore, using mass spectrometry, we identify six novel Ser/Thr autophosphorylation sites including regulatory Serine167 phosphorylation (pSer167), which in addition to pSer228 is required for ubiquitin recognition and phosphorylation. Strikingly, we also detect phosphorylation of a conserved Cysteine412 (pCys412) residue in the hPINK1 activation segment. Structural modelling suggests that pCys412 inhibits ubiquitin recognition and we demonstrate that mutation of Cys412 to Ala renders hPINK1 more active towards ubiquitin when expressed in human cells. These results outline new insights into hPINK1 activation by pSer167 and pSer228 and a novel inhibitory mechanism mediated by pCys412. These findings will aid in the development of small molecule activators of hPINK1

    Conflict and user involvement in drug misuse treatment decision-making: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper examines client/staff conflict and user involvement in drug misuse treatment decision-making.</p> <p>Methods</p> <p>Seventy-nine in-depth interviews were conducted with new treatment clients in two residential and two community drug treatment agencies. Fifty-nine of these clients were interviewed again after twelve weeks. Twenty-seven interviews were also conducted with staff, who were the keyworkers for the interviewed clients.</p> <p>Results</p> <p>Drug users did not expect, desire or prepare for conflict at treatment entry. They reported few actual conflicts within the treatment setting, but routinely discussed latent conflicts – that is, negative experiences and problematic aspects of current or previous treatment that could potentially escalate into overt disputes. Conflict resulted in a number of possible outcomes, including the premature termination of treatment; staff deciding on the appropriate outcome; the client appealing to the governance structure of the agency; brokered compromise; and staff skilfully eliciting client consent for staff decisions.</p> <p>Conclusion</p> <p>Although the implementation of user involvement in drug treatment decision-making has the potential to trigger high levels of staff-client conflict, latent conflict is more common than overt conflict and not all conflict is negative. Drug users generally want to be co-operative at treatment entry and often adopt non-confrontational forms of covert resistance to decisions about which they disagree. Staff sometimes deploy user involvement as a strategy for managing conflict and soliciting client compliance to treatment protocols. Suggestions for minimising and avoiding harmful conflict in treatment settings are given.</p

    Past and present distribution, densities and movements of blue whales <i>Balaenoptera musculus</i> in the Southern Hemisphere and northern Indian Ocean

    Get PDF
    1Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of =8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings.2Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar.3Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering.4Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic.5Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.6South-east Pacific blue whales have a discrete distribution and high sighting rates compared with the Antarctic. Further work is needed to clarify their subspecific status given their distinctive genetics, acoustics and length frequencies.7Antarctic blue whales numbered 1700 (95% Bayesian interval 860–2900) in 1996 (less than 1% of original levels), but are increasing at 7.3% per annum (95% Bayesian interval 1.4–11.6%). The status of other populations in the Southern Hemisphere and northern Indian Ocean is unknown because few abundance estimates are available, but higher recent sighting rates suggest that they are less depleted than Antarctic blue whales.</li

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care(1) or hospitalization(2-4) after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease. © 2022, The Author(s)
    • 

    corecore