17 research outputs found

    Electrocaloric Response of the Dense Ferroelectric Nanocomposites

    Full text link
    Using the Landau-Ginzburg-Devonshire approach and effective media models, we calculated the spontaneous polarization, dielectric, pyroelectric, and electrocaloric properties of BaTiO3_3 core-shell nanoparticles. We predict that the synergy of size effects and Vegard stresses can significantly improve the electrocaloric cooling (2- 7 times) of the BaTiO3_3 nanoparticles with diameters (10-100) nm stretched by (1-3)% in comparison with a bulk BaTiO3_3. To compare with the proposed and other known models, we measured the capacitance-voltage and current-voltage characteristics of the dense nanocomposites consisting of (28 -35) vol.% of the BaTiO3_3 nanoparticles incorporated in the poly-vinyl-butyral and ethyl-cellulose polymers covered by Ag electrodes. We determined experimentally the effective dielectric permittivity and losses of the dense composites at room temperature. According to our analysis, to reach the maximal electrocaloric response of the core-shell ferroelectric nanoparticles incorporated in different polymers, the dense composites should be prepared with the nanoparticles volume ratio of more than 25 % and fillers with low heat mass and conductance, such as Ag nanoparticles, which facilitate the heat transfer from the ferroelectric nanoparticles to the polymer matrix. In general, the core-shell ferroelectric nanoparticles spontaneously stressed by elastic defects, such as oxygen vacancies or any other elastic dipoles, which create a strong chemical pressure, are relevant fillers for electrocaloric nanocomposites suitable for advanced applications as nano-coolers.Comment: 38 pages, including 10 figures and 2 appendixe

    Bending-induced isostructural transitions in ultrathin layers of van der Waals ferrielectrics

    Full text link
    Using Landau-Ginzburg-Devonshire (LGD) phenomenological approach we analyze the bending-induced re-distribution of electric polarization and field, elastic stresses and strains inside ultrathin layers of van der Waals ferrielectrics. We consider a CuInP2S6 (CIPS) thin layer with fixed edges and suspended central part, the bending of which is induced by external forces. The unique aspect of CIPS is the existence of two ferrielectric states, FI1 and FI2, corresponding to big and small polarization values, which arise due to the specific four-well potential of the eighth-order LGD functional. When the CIPS layer is flat, the single-domain FI1 state is stable in the central part of the layer, and the FI2 states are stable near the fixed edges. With an increase of the layer bending below the critical value, the sizes of the FI2 states near the fixed edges decreases, and the size of the FI1 region increases. When the bending exceeds the critical value, the edge FI2 states disappear being substituted by the FI1 state, but they appear abruptly near the inflection regions and expand as the bending increases. The bending-induced isostructural FI1-FI2 transition is specific for the bended van der Waals ferrielectrics described by the eighth (or higher) order LGD functional with consideration of linear and nonlinear electrostriction couplings. The isostructural transition, which is revealed in the vicinity of room temperature, can significantly reduce the coercive voltage of ferroelectric polarization reversal in CIPS nanoflakes, allowing for the curvature-engineering control of various flexible nanodevices.Comment: 26 pages, 7 figures and Appendices A-
    corecore