1,517 research outputs found
Inward and Outward Integral Equations and the KKR Method for Photons
In the case of electromagnetic waves it is necessary to distinguish between
inward and outward on-shell integral equations. Both kinds of equation are
derived. A correct implementation of the photonic KKR method then requires the
inward equations and it follows directly from them. A derivation of the KKR
method from a variational principle is also outlined. Rather surprisingly, the
variational KKR method cannot be entirely written in terms of surface integrals
unless permeabilities are piecewise constant. Both kinds of photonic KKR method
use the standard structure constants of the electronic KKR method and hence
allow for a direct numerical application. As a by-product, matching rules are
obtained for derivatives of fields on different sides of the discontinuity of
permeabilities.
Key words: The Maxwell equations, photonic band gap calculationsComment: (to appear in J. Phys. : Cond. Matter), Latex 17 pp, PRA-HEP 93/10
(exclusively English and unimportant misprints corrected
The extended Malkus-Robbins dynamo as a perturbed Lorenz system
Recent investigations of some self-exciting Faraday-disk homopolar dynamo ([1-4]) have yielded the classic Lorenz equations as a special limit when one of the principal bifurcation parameters is zero. In this paper we focus upon one of those models [3] and illustrate what happens to some of the lowest order unstable periodic orbits as this parameter is increased from zero
Pulling hairpinned polynucleotide chains: Does base-pair stacking interaction matter?
Force-induced structural transitions both in relatively random and in
designed single-stranded DNA (ssDNA) chains are studied theoretically. At high
salt conditions, ssDNA forms compacted hairpin patterns stabilized by
base-pairing and base-pair stacking interactions, and a threshold external
force is needed to pull the hairpinned structure into a random coiled one. The
base-pair stacking interaction in the ssDNA chain makes this hairpin-coil
conversion a discontinuous (first-order) phase transition process characterized
by a force plateau in the force-extension curve, while lowering this potential
below some critical level turns this transition into continuous (second-order)
type, no matter how strong the base-pairing interaction is. The phase diagram
(including hairpin-I, -II, and random coil) is discussed as a function of
stacking potential and external force. These results are in quantitative
agreement with recent experimental observations of different ssDNA sequences,
and they reveal the necessity to consider the base-pair stacking interactions
in order to understand the structural formation of RNA, a polymer designed by
nature itself. The theoretical method used may be extended to study the
long-range interaction along double-stranded DNA caused by the topological
constraint of fixed linking number.Comment: 8 pages using Revte
On Pauli Pairs
The state of a system in classical mechanics can be uniquely reconstructed if
we know the positions and the momenta of all its parts. In 1958 Pauli has
conjectured that the same holds for quantum mechanical systems. The conjecture
turned out to be wrong. In this paper we provide a new set of examples of Pauli
pairs, being the pairs of quantum states indistinguishable by measuring the
spatial location and momentum. In particular, we construct a new set of
spatially localized Pauli pairs.Comment: submitted to JM
Photonic crystals of coated metallic spheres
It is shown that simple face-centered-cubic (fcc) structures of both metallic
and coated metallic spheres are ideal candidates to achieve a tunable complete
photonic bandgap (CPBG) for optical wavelengths using currently available
experimental techniques. For coated microspheres with the coating width to
plasma wavelength ratio and the coating and host
refractive indices and , respectively, between 1 and 1.47, one can
always find a sphere radius such that the relative gap width (gap
width to the midgap frequency ratio) is larger than 5% and, in some cases,
can exceed 9%. Using different coatings and supporting liquids, the width
and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For
more info on this subject see
http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm
- …