1,517 research outputs found

    Inward and Outward Integral Equations and the KKR Method for Photons

    Full text link
    In the case of electromagnetic waves it is necessary to distinguish between inward and outward on-shell integral equations. Both kinds of equation are derived. A correct implementation of the photonic KKR method then requires the inward equations and it follows directly from them. A derivation of the KKR method from a variational principle is also outlined. Rather surprisingly, the variational KKR method cannot be entirely written in terms of surface integrals unless permeabilities are piecewise constant. Both kinds of photonic KKR method use the standard structure constants of the electronic KKR method and hence allow for a direct numerical application. As a by-product, matching rules are obtained for derivatives of fields on different sides of the discontinuity of permeabilities. Key words: The Maxwell equations, photonic band gap calculationsComment: (to appear in J. Phys. : Cond. Matter), Latex 17 pp, PRA-HEP 93/10 (exclusively English and unimportant misprints corrected

    The extended Malkus-Robbins dynamo as a perturbed Lorenz system

    Get PDF
    Recent investigations of some self-exciting Faraday-disk homopolar dynamo ([1-4]) have yielded the classic Lorenz equations as a special limit when one of the principal bifurcation parameters is zero. In this paper we focus upon one of those models [3] and illustrate what happens to some of the lowest order unstable periodic orbits as this parameter is increased from zero

    Pulling hairpinned polynucleotide chains: Does base-pair stacking interaction matter?

    Full text link
    Force-induced structural transitions both in relatively random and in designed single-stranded DNA (ssDNA) chains are studied theoretically. At high salt conditions, ssDNA forms compacted hairpin patterns stabilized by base-pairing and base-pair stacking interactions, and a threshold external force is needed to pull the hairpinned structure into a random coiled one. The base-pair stacking interaction in the ssDNA chain makes this hairpin-coil conversion a discontinuous (first-order) phase transition process characterized by a force plateau in the force-extension curve, while lowering this potential below some critical level turns this transition into continuous (second-order) type, no matter how strong the base-pairing interaction is. The phase diagram (including hairpin-I, -II, and random coil) is discussed as a function of stacking potential and external force. These results are in quantitative agreement with recent experimental observations of different ssDNA sequences, and they reveal the necessity to consider the base-pair stacking interactions in order to understand the structural formation of RNA, a polymer designed by nature itself. The theoretical method used may be extended to study the long-range interaction along double-stranded DNA caused by the topological constraint of fixed linking number.Comment: 8 pages using Revte

    On Pauli Pairs

    Get PDF
    The state of a system in classical mechanics can be uniquely reconstructed if we know the positions and the momenta of all its parts. In 1958 Pauli has conjectured that the same holds for quantum mechanical systems. The conjecture turned out to be wrong. In this paper we provide a new set of examples of Pauli pairs, being the pairs of quantum states indistinguishable by measuring the spatial location and momentum. In particular, we construct a new set of spatially localized Pauli pairs.Comment: submitted to JM

    Photonic crystals of coated metallic spheres

    Full text link
    It is shown that simple face-centered-cubic (fcc) structures of both metallic and coated metallic spheres are ideal candidates to achieve a tunable complete photonic bandgap (CPBG) for optical wavelengths using currently available experimental techniques. For coated microspheres with the coating width to plasma wavelength ratio lc/λp≤10l_c/\lambda_p \leq 10% and the coating and host refractive indices ncn_c and nhn_h, respectively, between 1 and 1.47, one can always find a sphere radius rsr_s such that the relative gap width gwg_w (gap width to the midgap frequency ratio) is larger than 5% and, in some cases, gwg_w can exceed 9%. Using different coatings and supporting liquids, the width and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For more info on this subject see http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm
    • …
    corecore