17 research outputs found

    Chicken embryo as a model in second heart field development

    No full text
    Previously, a single source of progenitor‾\underline {progenitor} cells‾\underline {cells} was thought to be responsible for the formation of the cardiac‾\underline {cardiac} muscle‾\underline {muscle}. However, the second heart field has recently been identified as an additional source of myocardial pprogenitor‾\underline {progenitor} cells‾\underline {cells}. The chicken embryo, which develops in the egg, outside the mother can easily be manipulated in vivo\textit {in vivo} and in vitro\textit {in vitro}. Hence, it was an excellent model for establishing the concept of the second heart field. Here, our review will focus on the chicken model, specifically its role in understanding the second heart field. In addition to discussing historical aspects, we provide an overview of recent findings that have helped to define the chicken second heart field progenitor‾\underline {progenitor} cells‾\underline {cells}. A better understanding of the second heart field development will provide important insights into the congenital‾\underline {congenital} malformations‾\underline {malformations} affecting cardiac‾\underline {cardiac} muscle‾\underline {muscle} formation and function

    Local glucocorticoid administration impairs embryonic wound healing

    No full text
    Understanding the complex processes of fetal wound healing and skin regeneration can help to improve fetal surgery. As part of the integumentary system, the skin protects the newborn organism against environmental factors and serves various functions. Glucocorticoids can enter the fetal circulatory system by either elevated maternal stress perception or through therapeutic administration and are known to affect adult skin composition and wound regeneration. In the present study, we aimed at investigating the effects of local glucocorticoid administration on the process of embryonic wound healing. We performed in-ovo bead implantation of dexamethasone beads into skin incisional wounds of avian embryos and observed the local effects of the glucocorticoid on the process of skin regeneration through histology, immunohistochemistry and in-situ hybridization, using vimentin, fibronectin, E-cadherin, Dermo-1 and phospho-Histone H3 as investigational markers. Local glucocorticoid administration decelerated the healing of the skin incisional wounds by impairing mesenchymal contraction and re-epithelialization resulting in morphological changes, such as increased epithelialization and disorganized matrix formation. The results contribute to a better understanding of scarless embryonic wound healing and how glucocorticoids might interfere with the underlying molecular processes, possibly indicating that glucocorticoid therapies in prenatal clinical practice should be carefully evaluated

    The CXCR4/SDF-1 axis in the development of facial expression and non-somitic neck muscles

    No full text
    Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed

    In vivo drug testing during embryonic wound healing

    No full text
    The relevance of identifying pathological processes in the context of embryonic development is increasingly gaining attention in terms of professionalized prenatal care. To analyze local effects of prenatally administered drugs during embryonic development, the model organism of the chicken embryo can be used in a first exploratory approach. For the examination of local dexamethasone administration — as an exemplary drug — common bead implantation protocols have been adapted to serve as an in vivo technique for local drug testing during embryonic skin regeneration. For this, acrylic beads were soaked in a dexamethasone solution and implanted into skin incisional wounds of 4-day-old chicken embryos. After further incubation, the effects of the applied substance on the process of embryonic skin regeneration were analyzed using histological and molecular biological techniques. This data descriptor contains a detailed microsurgical protocol, a representative video demonstration, and exemplary results of local glucocorticoid-induced changes during embryonic wound healing. To conclude, this method allows for the analysis of the local effects of a particular substance on a cellular level and can be extended to serve as an in vivo technique for numerous other drugs to be tested on embryonic tissue

    New insights into the diversity of branchiomeric muscle development

    No full text
    Branchiomeric skeletal muscles are a subset of head muscles originating from skeletal muscle progenitor cells in the mesodermal core of pharyngeal arches. These muscles are involved in facial expression, mastication, and function of the larynx and pharynx. Branchiomeric muscles have been the focus of many studies over the years due to their distinct developmental programs and common origin with the heart muscle. A prerequisite for investigating these muscles’ properties and therapeutic potential is understanding their genetic program and differentiation. In contrast to our understanding of how branchiomeric muscles are formed, less is known about their differentiation. This review focuses on the differentiation of branchiomeric muscles in mouse embryos. Furthermore, the relationship between branchiomeric muscle progenitor and neural crest cells in the pharyngeal arches of chicken embryos is also discussed. Additionally, we summarize recent studies into the genetic networks that distinguish between first arch-derived muscles and other pharyngeal arch muscles

    Expression pattern of Axin2\it Axin2 during chicken development

    No full text
    Canonical Wnt\it Wnt-signalling is well understood and has been extensively described in many developmental processes. The regulation of this signaling pathway is of outstanding relevance for proper development of the vertebrate and invertebrate embryo. Axin2\it Axin2 provides a negative-feedback-loop in the canonical Wnt\it Wnt-pathway, being a target gene and a negative regulator. Here we provide a detailed analysis of the expression pattern in the development of the chicken embryo. By performing in-situ\textit {in-situ} hybridization on chicken embryos from stage HH 04+ to HH 32 we detected a temporally and spatially restricted dynamic expression of Axin2\it Axin2. In particular, data about the expression of Axin2\it Axin2 mRNA in early embryogenesis, somites, neural tube, limbs, kidney and eyes was obtained

    How to distinguish between different cell lineages sharing common markers using combinations of double in-situ-hybridization and immunostaining in avian embryos

    No full text
    Cell migration plays a crucial role in early embryonic development. The chemokine receptor CXCR4 has been reported to guide migration of neural crest cells (NCCs) to form the dorsal root ganglia (DRG) and sympathetic ganglia (SG). CXCR4 also plays an important part during the formation of limb and cloacal muscles. NCCs migration and muscle formation during embryonic development are usually considered separately, although both cell lineages migrate in close neighbourhood and have markers in common. In this study, we present a new method for the simultaneous detection of CXCR4, mesodermal markers and NCCs markers during chicken embryo developmental stages HH18–HH25 by combining double whole-mount in situ hybridization (ISH) and immunostaining on floating vibratome sections. The simultaneous detection of CXCR4 and markers for the mesodermal and neural crest cells in multiple labelling allowed us to compare complex gene expression patterns and it could be easily used for a wide range of gene expression pattern analyses of other chicken embryonic tissues. All steps of the procedure, including the preparation of probes and embryos, prehybridization, hybridization, visualization of the double labelled transcripts and immunostaining, are described in detail

    Chicken second branchial arch progenitor cells contribute to heart musculature in vitro and in vivo

    No full text
    In the past, the heart muscle was thought to originate from a single source of myocardial progenitor cells. More recently, however, an additional source of myocardial progenitors has been revealed to be the second heart field, and chicken embryos were important for establishing this concept. However, there have been few studies in chicken on how this field contributes to heart muscles in vitro. We have developed an ex vivo experimental system from chicken embryos between stages HH17–20 to investigate how mesodermal progenitors in the second branchial arch (BA2) differentiate into cardiac muscles. Using this method, we presented evidence that the progenitor cells within the BA2 arch differentiated into beating cardiomyocytes in vitro. The beating explant cells were positive for cardiac actin, Nkx2.5, and ventricular myosin heavy chain. In addition, we performed a time course for the expression of second heart field markers (Isl1 and Nkx2.5) in the BA2 from stage HH16 to stage HH21 using in situ hybridization. Accordingly, using EGFP-based cell labeling techniques and quail-chicken cell injection, we demonstrated that mesodermal cells from the BA2 contributed to the outflow tract and ventricular myocardium in vivo. Thus, our findings highlight the cardiogenic potential of chicken BA2 mesodermal cells in vitro and in vivo

    Dynamically changing mental stress parameters of first-year medical students over the three-year course of the COVID-19 pandemic

    No full text
    Numerous research results have already pointed towards the negative influence of increased mental stress on educational processes and motivational criteria. It has also been shown that the global public health crisis induced by COVID-19 was related to anxiety symptoms and elevated levels of distress. To holistically elucidate the dynamics of the pandemic-related mental stress of first-year medical students, the associated parameters of three different cohorts were measured at the beginning of the pandemic-related restrictions on university life in Germany (20/21), at the peak of the COVID-19-related restrictions (21/22) and during the easing of the restrictions in the winter term 22/23. In a repeated cross-sectional study design, the constructs of worries, tension, demands and joy were collected from first-year medical students (n\it n = 578) using the Perceived Stress Questionnaire. The results demonstrate significantly increased values of the constructs worries (p\it p < 0.001), tension (p\it p < 0.001) and demands (p\it p < 0.001) at the peak of the pandemic related restrictions compared to the previous and following year as well as significantly decreasing values of general joy of life during the observed period of 3 years (all p\it p-values < 0.001). A confirmatory factor analysis was performed to verify the questionnaire's factor structure regarding the addressed target group during the pandemic (CFI: 0.908, RMSEA: 0.071, SRMR: 0.052). These data, collected over a period of three years, provide information regarding dynamically manifesting mental stress during the COVID-19 pandemic, and refer to new areas of responsibility for the faculties to adequately counteract future crisis situations

    The emergence of embryonic myosin heavy chain during branchiomeric muscle development

    No full text
    A prerequisite for discovering the properties and therapeutic potential of branchiomeric muscles is an understanding of their fate determination, pattering and differentiation. Although the expression of differentiation markers such as myosin heavy chain (MyHC) during trunk myogenesis has been more intensively studied, little is known about its expression in the developing branchiomeric muscle anlagen. To shed light on this, we traced the onset of MyHC expression in the facial and neck muscle anlagen by using the whole-mount in situ hybridization between embryonic days E9.5 and E15.5 in the mouse. Unlike trunk muscle, the facial and neck muscle anlagen express MyHC at late stages. Within the branchiomeric muscles, our results showed variation in the emergence of MyHC expression. MyHC was first detected in the first arch-derived muscle anlagen, while its expression in the second arch-derived muscle and non-somitic neck muscle began at a later time point. Additionally, we show that non-ectomesenchymal neural crest invasion of the second branchial arch is delayed compared with that of the first brachial arch in chicken embryos. Thus, our findings reflect the timing underlying branchiomeric muscle differentiation
    corecore