343 research outputs found
Type-I superconductivity in ScGa3 and LuGa3 single crystals
We present evidence of type-I superconductivity in single crystals of ScGa3
and LuGa3, from magnetization, specific heat, and resistivity measurements: low
critical temperatures Tc = 2.1-2.2 K; field-induced secondto first-order phase
transition in the specific heat, critical fields less than 240 Oe; and low
Ginzburg-Landau coefficients {\kappa} approx 0.23 and 0.30 for ScGa3 and LuGa3,
respectively, are all traits of a type-I superconducting ground state. These
observations render ScGa3 and LuGa3 two of only several type-I superconducting
compounds, with most other superconductors being type II (compounds and alloys)
or type I (elemental metals and metaloids).Comment: 5 pages, 6 figure
Conditions for electron-cyclotron maser emission in the solar corona
Context. The Sun is an active source of radio emission ranging from long
duration radio bursts associated with solar flares and coronal mass ejections
to more complex, short duration radio bursts such as solar S bursts, radio
spikes and fibre bursts. While plasma emission is thought to be the dominant
emission mechanism for most radio bursts, the electron-cyclotron maser (ECM)
mechanism may be responsible for more complex, short-duration bursts as well as
fine structures associated with long-duration bursts. Aims. We investigate the
conditions for ECM in the solar corona by considering the ratio of the electron
plasma frequency {\omega}p to the electron-cyclotron frequency {\Omega}e. The
ECM is theoretically possible when {\omega}p/{\Omega}e < 1. Methods.
Two-dimensional electron density, magnetic field, plasma frequency, and
electron cyclotron frequency maps of the off- limb corona were created using
observations from SDO/AIA and SOHO/LASCO, together with potential field
extrapolations of the magnetic field. These maps were then used to calculate
{\omega}p/{\Omega}e and Alfven velocity maps of the off-limb corona. Results.
We found that the condition for ECM emission ({\omega}p/{\Omega}e < 1) is
possible at heights < 1.07 R_sun in an active region near the limb; that is,
where magnetic field strengths are > 40 G and electron densities are greater
than 3x10^8 cm-3. In addition, we found comparatively high Alfv\'en velocities
(> 0.02 c or > 6000 km s-1) at heights < 1.07 R_sun within the active region.
Conclusions. This demonstrates that the condition for ECM emission is satisfied
within areas of the corona containing large magnetic fields, such as the core
of a large active region. Therefore, ECM could be a possible emission mechanism
for high-frequency radio and microwave bursts.Comment: 4 pages, 3 figure
Thermal expansion and effect of pressure on superconductivity in CuxTiSe2
We report measurements of thermal expansion on a number of polycrystalline
CuxTiSe2 samples corresponding to the parts of x - T phase diagram with
different ground states, as well as the pressure dependence of the
superconducting transition temperature for samples with three different values
of Cu-doping. Thermal expansion data suggest that the x - T phase diagram may
be more complex than initially reported. T_c data at elevated pressure can be
scaled to the ambient pressure CuxTiSe2 phase diagram, however, significantly
different scaling factors are needed to accommodate the literature data on the
charge density wave transition suppression under pressure
- …