343 research outputs found

    Type-I superconductivity in ScGa3 and LuGa3 single crystals

    Get PDF
    We present evidence of type-I superconductivity in single crystals of ScGa3 and LuGa3, from magnetization, specific heat, and resistivity measurements: low critical temperatures Tc = 2.1-2.2 K; field-induced secondto first-order phase transition in the specific heat, critical fields less than 240 Oe; and low Ginzburg-Landau coefficients {\kappa} approx 0.23 and 0.30 for ScGa3 and LuGa3, respectively, are all traits of a type-I superconducting ground state. These observations render ScGa3 and LuGa3 two of only several type-I superconducting compounds, with most other superconductors being type II (compounds and alloys) or type I (elemental metals and metaloids).Comment: 5 pages, 6 figure

    Conditions for electron-cyclotron maser emission in the solar corona

    Full text link
    Context. The Sun is an active source of radio emission ranging from long duration radio bursts associated with solar flares and coronal mass ejections to more complex, short duration radio bursts such as solar S bursts, radio spikes and fibre bursts. While plasma emission is thought to be the dominant emission mechanism for most radio bursts, the electron-cyclotron maser (ECM) mechanism may be responsible for more complex, short-duration bursts as well as fine structures associated with long-duration bursts. Aims. We investigate the conditions for ECM in the solar corona by considering the ratio of the electron plasma frequency {\omega}p to the electron-cyclotron frequency {\Omega}e. The ECM is theoretically possible when {\omega}p/{\Omega}e < 1. Methods. Two-dimensional electron density, magnetic field, plasma frequency, and electron cyclotron frequency maps of the off- limb corona were created using observations from SDO/AIA and SOHO/LASCO, together with potential field extrapolations of the magnetic field. These maps were then used to calculate {\omega}p/{\Omega}e and Alfven velocity maps of the off-limb corona. Results. We found that the condition for ECM emission ({\omega}p/{\Omega}e < 1) is possible at heights < 1.07 R_sun in an active region near the limb; that is, where magnetic field strengths are > 40 G and electron densities are greater than 3x10^8 cm-3. In addition, we found comparatively high Alfv\'en velocities (> 0.02 c or > 6000 km s-1) at heights < 1.07 R_sun within the active region. Conclusions. This demonstrates that the condition for ECM emission is satisfied within areas of the corona containing large magnetic fields, such as the core of a large active region. Therefore, ECM could be a possible emission mechanism for high-frequency radio and microwave bursts.Comment: 4 pages, 3 figure

    Thermal expansion and effect of pressure on superconductivity in CuxTiSe2

    Full text link
    We report measurements of thermal expansion on a number of polycrystalline CuxTiSe2 samples corresponding to the parts of x - T phase diagram with different ground states, as well as the pressure dependence of the superconducting transition temperature for samples with three different values of Cu-doping. Thermal expansion data suggest that the x - T phase diagram may be more complex than initially reported. T_c data at elevated pressure can be scaled to the ambient pressure CuxTiSe2 phase diagram, however, significantly different scaling factors are needed to accommodate the literature data on the charge density wave transition suppression under pressure
    • …
    corecore