138 research outputs found

    High Fluid‐Pressure Patches Beneath the DĂ©collement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto

    Get PDF
    ć—æ”·ăƒˆăƒ©ăƒ•ăźă‚čăƒ­ăƒŒćœ°éœ‡éœ‡æșćŸŸèż‘ć‚ă«é«˜ćœ§ăźé–“éš™æ°ŽćžŻă‚’çąșèȘ --ă‚čăƒ­ăƒŒćœ°éœ‡ç™șç”ŸăźăƒĄă‚«ăƒ‹ă‚șăƒ è§Łæ˜Žăžć‰é€Č--. äșŹéƒœć€§ć­Šăƒ—ăƒŹă‚čăƒȘăƒȘăƒŒă‚č. 2021-06-17.Pore pressure plays a key role in the generation of earthquakes in subduction zones. However, quantitative constraints for its determination are quite limited. Here, we estimate the subsurface pore pressure by analyzing the transient upwelling flow of drilling mud from borehole C0023A of the International Ocean Discovery Program (IODP) Expedition 370, in the Nankai Trough off Cape Muroto. This upward flow provided the first direct evidence of an overpressured aquifer in the underthrust sediments off Cape Muroto. To estimate the pre-drilling pore pressure in the overpressured aquifer around a depth of 950–1, 050 m below sea floor, we examined the measured porosities of core samples retrieved from nearby IODP wells; we then proceeded to explain the observed time evolution of the flow rate of the upwelling flow by modeling various sized aquifers through solving a radial diffusion equation. It was observed that for a permeability of 10⁻ÂčÂł mÂČ, the aquifer possessed an initial excess pore pressure of ∌5–10 MPa above the hydrostatic pressure, with a lateral dimension of several hundred meters and thickness of several tens of meters. The overpressure estimates from the porosity-depth profile at Site C0023 differ from those at other drill sites in the region, suggesting the possible existence of multiple overpressured aquifers with a patchy distribution in the underthrust sediments of the Nankai Trough. As pore pressure is relevant in maintaining fault stability, the overpressured aquifers may be the source of slow earthquakes that have been observed around the drilling site

    The limits of life and the biosphere in earth’s interior

    Get PDF
    Fifty years of scientific ocean drilling have shown that microorganisms are widespread deep inside the ocean floor. Microbial populations exist in both organic-matter-rich and nutrient-poor sediments (Kallmeyer et al., 2012; D’Hondt et al., 2015), in sediments that are millions of years old and are buried to over a kilometer depth (Roussel et al., 2008; Ciobanu et al., 2014; Inagaki et al., 2015), and deep inside the basaltic oceanic crust (Orcutt et al., 2011; Lever et al., 2013). In these varied environments, metabolic activity is extraordinarily low (D’Hondt et al., 2009; Hoehler and Jþrgensen 2013; Lever et al. 2015a), but microbial cells remain physiologically active (Morono et al., 2011) or survive in their dormant phases (Lomstein et al., 2012). The total amount of sub-surface biomass is still being debated (Hinrichs and Inagaki, 2012; Kallmeyer et al., 2012; Parkes et al., 2014) and the factors posing ultimate limits to deep life and the habitability of Earth remain to be resolved

    Modelling the Shimokita deep coalbed biosphere over deep geological time : Starvation, stimulation, material balance and population models

    Get PDF
    ACKNOWLEDGEMENTS The authors are grateful to all crews, drilling team members, lab technicians and scientists on the drilling vessel Chikyu for supporting core sampling and on board measurements during the Chikyu shakedown cruise CK06‐06 and the Integrated Ocean Drilling Program (IODP) Expedition 337. This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Strategic Fund for Strengthening Leading‐Edge Research and Development (to F.I. and JAMSTEC), the JSPS Funding Program for Next Generation World‐Leading Researchers (NEXT Program, no. GR102 to F.I.). All shipboard and shore‐based data presented in this manuscript are archived and publicly available on‐line in either the IODP Expedition 337 Proceedings through the J‐CORES (http://sio7.jamstec.go.jp/j-cores.data/337/C0020A/), the PANGAEA database (www.pangaea.de, doi.org/10.1594/PANGAEA.845984), or Inagaki et al., 2015, respectively. Petromod Basin Modelling software was provided by Schlumberger to the University of Aberdeen. This is a contribution to the Deep Carbon Observatory (DCO). SAB wishes to thank HSB for support preparing the manuscript. DATA AVAILABILITY STATEMENT All shipboard and shore‐based data presented in this manuscript are archived and publicly available on‐line in either the IODP Expedition 337 Proceedings through the J‐CORES (http://sio7.jamstec.go.jp/j-cores.data/337/C0020A/), the PANGAEA database (www.pangaea.de, https://doi.org/10.1594/PANGAEA.845984), or Inagaki et al., 2015, respectively.Peer reviewedPostprin

    Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    Get PDF
    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community

    Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis

    Get PDF
    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with ^(15)N and ^(13)C, or unlabeled heat-killed bacteria and labeled inorganic substrates (^(13)C-bicarbonate and ^(15)N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84–99% of its carbon and 88–95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic ^(13)C-carbon and ^(15)N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species

    Temperature limits to deep subseafloor life in the Nankai Trough subduction zone

    Get PDF
    No embargo required.Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hot sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop two orders of magnitude and endospores become more than 6000 times more abundant than vegetative cells. Methane is biologically produced and oxidized until sediments reach 80° to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrations demonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zones alternate with zones up to 192 meters thick where microbes were undetectable.</jats:p

    Central sites. Atlantis Massif: Serpentinisation and life

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.30 to 16.44 meters below seafloor and core recoveries as high as 74.76% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 reveal a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential (ORP), temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans and will verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, MAR, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif

    Eastern sites. Atlantis Massif: Serpentinisation and life

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.30 to 16.44 meters below seafloor and core recoveries as high as 74.76% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 reveal a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential (ORP), temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans and will verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, MAR, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif

    Expedition 357 methods

    Get PDF
    This chapter documents the primary procedures and methods employed by the operational and scientific groups during the offshore and onshore phases of International Ocean Discovery Program (IODP) Expedition 357. This information concerns only shipboard and Onshore Science Party (OSP) methods described in the site chapters. Methods for postexpedition research conducted on Expedition 357 samples and data will be described in individual scientific contributions. Detailed drilling and engineering operations are described in the Operations section of each site chapter
    • 

    corecore