2 research outputs found
Studies of strongly-correlated fermions in an optical lattice
Ultracold fermionic atoms in a disordered optical lattice can realize the disordered Fermi-Hubbard model, allowing investigations of the nature of strongly-correlated fermions in a minimal setting. This thesis describes two such studies. In the first, we observe the momentum relaxation of strongly-correlated fermions in the absence of disorder. We find a violation of the weak-scattering prediction for the scaling with temperature, which is analogous to the linear-in-temperature scaling of resistivity in substances called ``bad metals.'' In the second, we probe a disordered and strongly-correlated system using quenches of the interaction strength that take it far from equilibrium. We find that the relaxation of double occupancies following the quenches has distinct dynamical regimes controlled by the interplay of interactions and disorder. We present a minimal picture of the relaxation process that illustrates the origin of these regimes, which are related to the Mott--metal--Anderson transitions of the ground state at half-filling
Studies of strongly-correlated fermions in an optical lattice
Ultracold fermionic atoms in a disordered optical lattice can realize the disordered Fermi-Hubbard model, allowing investigations of the nature of strongly-correlated fermions in a minimal setting. This thesis describes two such studies. In the first, we observe the momentum relaxation of strongly-correlated fermions in the absence of disorder. We find a violation of the weak-scattering prediction for the scaling with temperature, which is analogous to the linear-in-temperature scaling of resistivity in substances called ``bad metals.'' In the second, we probe a disordered and strongly-correlated system using quenches of the interaction strength that take it far from equilibrium. We find that the relaxation of double occupancies following the quenches has distinct dynamical regimes controlled by the interplay of interactions and disorder. We present a minimal picture of the relaxation process that illustrates the origin of these regimes, which are related to the Mott--metal--Anderson transitions of the ground state at half-filling