20 research outputs found

    Hard limits on the postselectability of optical graph states

    Get PDF
    Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates---required for the construction of large graph states---are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We derive a fundamental limitation on the generation of photonic qubit states using postselected entangling gates: experiments which contain a cycle of postselected gates cannot be postselected. Further, we analyse experiments that use photons from postselected photon pair sources, and lower bound the number of classes of graph state entanglement that are accessible in the non-degenerate case---graph state entanglement classes that contain a tree are are always accessible. Numerical investigation up to 9-qubits shows that the proportion of graph states that are accessible using postselection diminishes rapidly. We provide tables showing which classes are accessible for a variety of up to nine qubit resource states and sources. We also use our methods to evaluate near-term multi-photon experiments, and provide our algorithms for doing so.Comment: Our manuscript comprises 4843 words, 6 figures, 1 table, 47 references, and a supplementary material of 1741 words, 2 figures, 1 table, and a Mathematica code listin

    Physical-depth architectural requirements for generating universal photonic cluster states

    Get PDF
    Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation (MBQC). In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.Comment: 18 pages, 10 figure

    Representing fractals by superoscillations

    Get PDF

    Advances in quantum machine learning

    Get PDF
    Here we discuss advances in the field of quantum machine learning. The following document offers a hybrid discussion; both reviewing the field as it is currently, and suggesting directions for further research. We include both algorithms and experimental implementations in the discussion. The field's outlook is generally positive, showing significant promise. However, we believe there are appreciable hurdles to overcome before one can claim that it is a primary application of quantum computation.Comment: 38 pages, 17 Figure

    Mapping graph state orbits under local complementation

    Get PDF
    Graph states, and the entanglement they posses, are central to modern quantum computing and communications architectures. Local complementation---the graph operation that links all local-Clifford equivalent graph states---allows us to classify all stabiliser states by their entanglement. Here, we study the structure of the orbits generated by local complementation, mapping them up to 9 qubits and revealing a rich hidden structure. We provide programs to compute these orbits, along with our data for each of the 587 orbits up to 9 qubits and a means to visualise them. We find direct links between the connectivity of certain orbits with the entanglement properties of their component graph states. Furthermore, we observe the correlations between graph-theoretical orbit properties, such as diameter and colourability, with Schmidt measure and preparation complexity and suggest potential applications. It is well known that graph theory and quantum entanglement have strong interplay---our exploration deepens this relationship, providing new tools with which to probe the nature of entanglement

    Loss-tolerant teleportation on large stabilizer states

    Get PDF
    We present a general method for finding loss-tolerant teleportation on large, entangled stabilizer states using only single-qubit measurements, known as \emph{stabilizer pathfinding} (SPF). For heralded loss, SPF is shown to generate optimally loss-tolerant measurement patterns on any given stabilizer state. Furthermore, SPF also provides highly loss-tolerant teleportation strategies when qubit loss is unheralded. We provide a fast algorithm for SPF that updates continuously as a state is generated and measured, which is therefore suitable for real-time implementation on a quantum-computing device. When compared to simulations of previous heuristics for loss-tolerant teleportation on graph states, SPF provides considerable gains in tolerance to both heralded and unheralded loss, achieving a near-perfect teleportation rate (>95%> 95\%) in the regime of low qubit loss (<10%< 10\%) on various graph state lattices. Using these results we also present evidence that points towards the existence of loss-tolerant thresholds on such states, which in turn indicates that the loss-tolerant behaviour we have found also applies as the number of qubits tends to infinity. Our results represent a significant advance towards the realistic implementation of teleportation in both large-scale and near-future quantum architectures that are susceptible to qubit loss, such as linear optical quantum computation and quantum communication networks.Comment: 29 pages, 12 figures. Quantum Science and Technology (2018
    corecore