103 research outputs found
Molecular evolution of glycoside hydrolase genes in the Western corn rootworm (Diabrotica virgifera virgifera).
Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tCellulose is an important nutritional resource for a number of insect herbivores. Digestion of cellulose and other polysaccharides in plant-based diets requires several types of enzymes including a number of glycoside hydrolase (GH) families. In a previous study, we showed that a single GH45 gene is present in the midgut tissue of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). However, the presence of multiple enzymes was also suggested by the lack of a significant biological response when the expression of the gene was silenced by RNA interference. In order to clarify the repertoire of cellulose-degrading enzymes and related GH family proteins in D. v. virgifera, we performed next-generation sequencing and assembled transcriptomes from the tissue of three different developmental stages (eggs, neonates, and third instar larvae). Results of this study revealed the presence of seventy-eight genes that potentially encode GH enzymes belonging to eight families (GH45, GH48, GH28, GH16, GH31, GH27, GH5, and GH1). The numbers of GH45 and GH28 genes identified in D. v. virgifera are among the largest in insects where these genes have been identified. Three GH family genes (GH45, GH48, and GH28) are found almost exclusively in two coleopteran superfamilies (Chrysomeloidea and Curculionoidea) among insects, indicating the possibility of their acquisitions by horizontal gene transfer rather than simple vertical transmission from ancestral lineages of insects. Acquisition of GH genes by horizontal gene transfers and subsequent lineage-specific GH gene expansion appear to have played important roles for phytophagous beetles in specializing on particular groups of host plants and in the case of D. v. virgifera, its close association with maize.Consortium for Plant Biotechnology ResearchPioneer Hi-Bred Internationa
Translational selection on SHH genes
Codon usage bias has been observed in various organisms. In this study, the correlation between SHH genes expression in some tissues and codon usage features was analyzed by bioinformatics. We found that translational selection may act on compositional features of this set of genes
Decoding of Superimposed Traces Produced by Direct Sequencing of Heterozygous Indels
Direct Sanger sequencing of a diploid template containing a heterozygous insertion or deletion results in a difficult-to-interpret mixed trace formed by two allelic traces superimposed onto each other. Existing computational methods for deconvolution of such traces require knowledge of a reference sequence or the availability of both direct and reverse mixed sequences of the same template. We describe a simple yet accurate method, which uses dynamic programming optimization to predict superimposed allelic sequences solely from a string of letters representing peaks within an individual mixed trace. We used the method to decode 104 human traces (mean length 294 bp) containing heterozygous indels 5 to 30 bp with a mean of 99.1% bases per allelic sequence reconstructed correctly and unambiguously. Simulations with artificial sequences have demonstrated that the method yields accurate reconstructions when (1) the allelic sequences forming the mixed trace are sufficiently similar, (2) the analyzed fragment is significantly longer than the indel, and (3) multiple indels, if present, are well-spaced. Because these conditions occur in most encountered DNA sequences, the method is widely applicable. It is available as a free Web application Indelligent at http://ctap.inhs.uiuc.edu/dmitriev/indel.asp
G Protein Activation without a GEF in the Plant Kingdom
Animal heterotrimeric G proteins are activated by guanine nucleotide exchange factors (GEF), typically seven transmembrane receptors that trigger GDP release and subsequent GTP binding. In contrast, the Arabidopsis thaliana G protein (AtGPA1) rapidly activates itself without a GEF and is instead regulated by a seven transmembrane Regulator of G protein Signaling (7TM-RGS) protein that promotes GTP hydrolysis to reset the inactive (GDP-bound) state. It is not known if this unusual activation is a major and constraining part of the evolutionary history of G signaling in eukaryotes. In particular, it is not known if this is an ancestral form or if this mechanism is maintained, and therefore constrained, within the plant kingdom. To determine if this mode of signal regulation is conserved throughout the plant kingdom, we analyzed available plant genomes for G protein signaling components, and we purified individually the plant components encoded in an informative set of plant genomes in order to determine their activation properties in vitro. While the subunits of the heterotrimeric G protein complex are encoded in vascular plant genomes, the 7TM-RGS genes were lost in all investigated grasses. Despite the absence of a Gα-inactivating protein in grasses, all vascular plant Gα proteins examined rapidly released GDP without a receptor and slowly hydrolyzed GTP, indicating that these Gα are self-activating. We showed further that a single amino acid substitution found naturally in grass Gα proteins reduced the Gα-RGS interaction, and this amino acid substitution occurred before the loss of the RGS gene in the grass lineage. Like grasses, non-vascular plants also appear to lack RGS proteins. However, unlike grasses, one representative non-vascular plant Gα showed rapid GTP hydrolysis, likely compensating for the loss of the RGS gene. Our findings, the loss of a regulatory gene and the retention of the “self-activating” trait, indicate the existence of divergent Gα regulatory mechanisms in the plant kingdom. In the grasses, purifying selection on the regulatory gene was lost after the physical decoupling of the RGS protein and its cognate Gα partner. More broadly these findings show extreme divergence in Gα activation and regulation that played a critical role in the evolution of G protein signaling pathways
Cystinosin, MPDU1, SWEETs and KDELR Belong to a Well-Defined Protein Family with Putative Function of Cargo Receptors Involved in Vesicle Trafficking
Classification of proteins into families based on remote homology often helps prediction of their biological function. Here we describe prediction of protein cargo receptors involved in vesicle formation and protein trafficking. Hidden Markov model profile-to-profile searches in protein databases using endoplasmic reticulum lumen protein retaining receptors (KDEL, Erd2) as query reveal a large and diverse family of proteins with seven transmembrane helices and common topology and, most likely, similar function. Their coding genes exist in all eukaryota and in several prokaryota. Some are responsible for metabolic diseases (cystinosis, congenital disorder of glycosylation), others are candidate genes for genetic disorders (cleft lip and palate, certain forms of cancer) or solute uptake and efflux (SWEETs) and many have not yet been assigned a function. Comparison with the properties of KDEL receptors suggests that the family members could be involved in protein trafficking and serve as cargo receptors. This prediction sheds new light on a range of biologically, medically and agronomically important proteins and could open the way to discovering the function of many genes not yet annotated. Experimental testing is suggested
Fine-Tuning Translation Kinetics Selection as the Driving Force of Codon Usage Bias in the Hepatitis A Virus Capsid
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness
Mitochondrial Pseudogenes in the Nuclear Genomes of Drosophila
Mitochondrial pseudogenes in nuclear chromosomes (numts) have been detected in the genomes of a diverse range of eukaryotic species. However, the numt content of different genomes and their properties is not uniform, and study of these differences provides insight into the mechanisms and dynamics of genome evolution in different organisms. In the genus Drosophila, numts have previously only been identified on a genome-wide scale in the melanogaster subgroup. The present study extends the identification to 11 species of the Drosophila genus. We identify a total of 302 numts and show that the numt complement is highly variable in Drosophilids, ranging from just 4 in D. melanogaster to 67 in D. willistoni, broadly correlating with genome size. Many numts have undergone large-scale rearrangements in the nucleus, including interruptions, inversions, deletions and duplications of sequence of variable size. Estimating the age of the numts in the nucleus by phylogenetic tree reconstruction reveals the vast majority of numts to be recent gains, 90% having arisen on terminal branches of the species tree. By identifying paralogs and counting duplications among the extant numts we estimate that 23% of extant numts arose through post-insertion duplications. We estimate genus average rates of insertion of 0.75 per million years, and a duplication rate of 0.010 duplications per numt per million years
Relationship between amino acid composition and gene expression in the mouse genome
<p>Abstract</p> <p>Background</p> <p>Codon bias is a phenomenon that refers to the differences in the frequencies of synonymous codons among different genes. In many organisms, natural selection is considered to be a cause of codon bias because codon usage in highly expressed genes is biased toward optimal codons. Methods have previously been developed to predict the expression level of genes from their nucleotide sequences, which is based on the observation that synonymous codon usage shows an overall bias toward a few codons called major codons. However, the relationship between codon bias and gene expression level, as proposed by the translation-selection model, is less evident in mammals.</p> <p>Findings</p> <p>We investigated the correlations between the expression levels of 1,182 mouse genes and amino acid composition, as well as between gene expression and codon preference. We found that a weak but significant correlation exists between gene expression levels and amino acid composition in mouse. In total, less than 10% of variation of expression levels is explained by amino acid components. We found the effect of codon preference on gene expression was weaker than the effect of amino acid composition, because no significant correlations were observed with respect to codon preference.</p> <p>Conclusion</p> <p>These results suggest that it is difficult to predict expression level from amino acid components or from codon bias in mouse.</p
A Naturally Occurring Polymorphism at Drosophila melanogaster Lim3 Locus, a Homolog of Human LHX3/4, Affects Lim3 Transcription and Fly Lifespan
Lim3 encodes an RNA polymerase II transcription factor with a key role in neuron specification. It was also identified as a candidate gene that affects lifespan. These pleiotropic effects indicate the fundamental significance of the potential interplay between neural development and lifespan control. The goal of this study was to analyze the causal relationships between Lim3 structural variations, and gene expression and lifespan changes, and to provide insights into regulatory pathways controlling lifespan. Fifty substitution lines containing second chromosomes from a Drosophila natural population were used to analyze the association between lifespan and sequence variation in the 5′-regulatory region, and first exon and intron of Lim3A, in which we discovered multiple transcription start sites (TSS). The core and proximal promoter organization for Lim3A and a previously unknown mRNA named Lim3C were described. A haplotype of two markers in the Lim3A regulatory region was significantly associated with variation in lifespan. We propose that polymorphisms in the regulatory region affect gene transcription, and consequently lifespan. Indeed, five polymorphic markers located within 380 to 680 bp of the Lim3A major TSS, including two markers associated with lifespan variation, were significantly associated with the level of Lim3A transcript, as evaluated by real time RT-PCR in embryos, adult heads, and testes. A naturally occurring polymorphism caused a six-fold change in gene transcription and a 25% change in lifespan. Markers associated with long lifespan and intermediate Lim3A transcription were present in the population at high frequencies. We hypothesize that polymorphic markers associated with Lim3A expression are located within the binding sites for proteins that regulate gene function, and provide general rather than tissue-specific regulation of transcription, and that intermediate levels of Lim3A expression confer a selective advantage and longer lifespan
Ancestral Inference and the Study of Codon Bias Evolution: Implications for Molecular Evolutionary Analyses of the Drosophila melanogaster Subgroup
Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest
- …