6,309 research outputs found
Interactive Chemical Reactivity Exploration
Elucidating chemical reactivity in complex molecular assemblies of a few
hundred atoms is, despite the remarkable progress in quantum chemistry, still a
major challenge. Black-box search methods to find intermediates and
transition-state structures might fail in such situations because of the
high-dimensionality of the potential energy surface. Here, we propose the
concept of interactive chemical reactivity exploration to effectively introduce
the chemist's intuition into the search process. We employ a haptic pointer
device with force-feedback to allow the operator the direct manipulation of
structures in three dimensions along with simultaneous perception of the
quantum mechanical response upon structure modification as forces. We elaborate
on the details of how such an interactive exploration should proceed and which
technical difficulties need to be overcome. All reactivity-exploration concepts
developed for this purpose have been implemented in the Samson programming
environment.Comment: 36 pages, 14 figure
Orbital Order and Spontaneous Orthorhombicity in Iron Pnictides
A growing list of experiments show orthorhombic electronic anisotropy in the
iron pnictides, in some cases at temperatures well above the spin density wave
transition. These experiments include neutron scattering, resistivity and
magnetoresistance measurements, and a variety of spectroscopies. We explore the
idea that these anisotropies stem from a common underlying cause: orbital order
manifest in an unequal occupation of and orbitals, arising
from the coupled spin-orbital degrees of freedom. We emphasize the distinction
between the total orbital occupation (the integrated density of states), where
the order parameter may be small, and the orbital polarization near the Fermi
level which can be more pronounced. We also discuss light-polarization studies
of angle-resolved photoemission, and demonstrate how x-ray absorption linear
dichroism may be used as a method to detect an orbital order parameter.Comment: Orig.: 4+ pages; Rev.: 4+ pages with updated content and reference
A high-gain Quantum free-electron laser: emergence & exponential gain
We derive an effective Dicke model in momentum space to describe collective
effects in the quantum regime of a free-electron laser (FEL). The resulting
exponential gain from a single passage of electrons allows the operation of a
Quantum FEL in the high-gain mode and avoids the experimental challenges of an
X-ray FEL oscillator. Moreover, we study the intensity fluctuations of the
emitted radiation which turn out to be super-Poissonian
Finite temperature spin-dynamics and phase transitions in spin-orbital models
We study finite temperature properties of a generic spin-orbital model
relevant to transition metal compounds, having coupled quantum Heisenberg-spin
and Ising-orbital degrees of freedom. The model system undergoes a phase
transition, consistent with that of a 2D Ising model, to an orbitally ordered
state at a temperature set by short-range magnetic order. At low temperatures
the orbital degrees of freedom freeze-out and the model maps on to a quantum
Heisenberg model. The onset of orbital excitations causes a rapid scrambling of
the spin spectral weight away from coherent spin-waves, which leads to a sharp
increase in uniform magnetic susceptibility just below the phase transition,
reminiscent of the observed behavior in the Fe-pnictide materials.Comment: 4 page
- …