826 research outputs found
Combining Phylogeography with Distribution Modeling: Multiple Pleistocene Range Expansions in a Parthenogenetic Gecko from the Australian Arid Zone
Phylogenetic and geographic evidence suggest that many parthenogenetic organisms have evolved recently and have spread rapidly. These patterns play a critical role in our understanding of the relative merits of sexual versus asexual reproductive modes, yet their interpretation is often hampered by a lack of detail. Here we present a detailed phylogeographic study of a vertebrate parthenogen, the Australian gecko Heteronotia binoei, in combination with statistical and biophysical modeling of its distribution during the last glacial maximum. Parthenogenetic H. binoei occur in the Australian arid zone and have the widest range of any known vertebrate parthenogen. They are broadly sympatric with their sexual counterparts, from which they arose via hybridization. We have applied nested clade phylogeographic, effective migration, and mismatch distribution analyses to mitochondrial DNA (mtDNA) sequences obtained for 319 individuals sampled throughout the known geographic ranges of two parthenogenetic mitochondrial lineages. These analyses provide strong evidence for past range expansion events from west to east across the arid zone, and for continuing eastward range expansion. Parthenogen formation and range expansion events date to the late Pleistocene, with one lineage expanding from the northwest of its present range around 240,000 years ago and the second lineage expanding from the far west around 70,000 years ago. Statistical and biophysical distribution models support these inferences of recent range expansion, with suitable climatic conditions during the last glacial maximum most likely limited to parts of the arid zone north and west of much of the current ranges of these lineages. Combination of phylogeographic analyses and distribution modeling allowed considerably stronger inferences of the history of this complex than either would in isolation, illustrating the power of combining complementary analytical approaches
A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus
The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump–probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins
Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}
Experimental evidence on high-Tc cuprates reveals ubiquitous charge density
wave (CDW) modulations, which coexist with superconductivity. Although the CDW
had been predicted by theory, important questions remain about the extent to
which the CDW influences lattice and charge degrees of freedom and its
characteristics as functions of doping and temperature. These questions are
intimately connected to the origin of the CDW and its relation to the
mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant
inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped
Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive
excitations from an incommensurate CDW that induces anomalously enhanced phonon
intensity, unseen using other techniques. Near the pseudogap temperature T*,
the CDW persists, but the associated excitations significantly weaken and the
CDW wavevector shifts, becoming nearly commensurate with a periodicity of four
lattice constants. The dispersive CDW excitations, phonon anomaly, and
temperature dependent commensuration provide a comprehensive momentum space
picture of complex CDW behavior and point to a closer relationship with the
pseudogap state
The host metabolite D-serine contributes to bacterial niche specificity through gene selection
Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity
Enhanced follicular delivery of finasteride to human scalp skin using heat and chemical penetration enhancers
© The Author(s) 2020. This article is an open access publication. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose The aim of this work was to evaluate whether improved topical delivery of finasteride, focussed to the hair follicles of human scalp skin could be achieved with application of short durations of heat and use of specific chemical penetration enhancers. Methods Franz cell experiments with human scalp skin were performed with a range of chemical penetration enhancers at 32°C and 45°C to simulate normal and heated conditions. Selected chemical penetration enhancers were taken forward for finite dose Franz cell studies which examined the effect of heat produced by a prototype external heating system that supplied either 20 or 30 min of additional heat over both a 24 h and a 1 h time period. Results Short durations of externally applied heat significantly increased finasteride penetration into human scalp skin after 24 h. Analysis of drug distribution in the skin after 1 h and 24 h indicated that both heat and chemical penetration enhancer selection influenced drug delivery to the hair follicles. Conclusion The use of short durations of heat in combination with specific chemical penetration enhancers was able to increase the delivery of finasteride to human scalp skin and provide focussed drug delivery to the hair follicles.Peer reviewe
Time course of collagen peak in bile duct-ligated rats
<p>Abstract</p> <p>Background</p> <p>One of the most useful experimental fibrogenesis models is the "bile duct-ligated rats". Our aim was to investigate the quantitative hepatic collagen content by two different methods during the different stages of hepatic fibrosis in bile duct-ligated rats on a weekly basis. We questioned whether the 1-wk or 4-wk bile duct-ligated model is suitable in animal fibrogenesis trials.</p> <p>Methods</p> <p>Of the 53 male Wistar rats, 8 (Group 0) were used as a healthy control group. Bile duct ligation (BDL) had been performed in the rest. Bile duct-ligated rates were sacrificed 7 days later in group 1 (10 rats), 14 days later in group 2 (9 rats), 21 days later in group 3(9 rats) and 28 days later in group 4 (9 rats). Eight rats underwent sham-operation (Sham). Hepatic collagen measurements as well as serum levels of liver enzymes and function tests were all analysed.</p> <p>Results</p> <p>The peak level of collagen was observed biochemically and histomorphometricly at the end of third week (P < 0.001 and P < 0.05). Suprisingly, collagen levels had decreased with the course of time such as at the end of fourth week (P < 0.01 and P < 0.05).</p> <p>Conclusion</p> <p>We have shown that fibrosis in bile duct-ligated rats is transient, i.e. reverses spontaneously after 3 weeks. This contrasts any situation in patients where hepatic fibrosis is progressive and irreversible as countless studies performed by many investigators in the same animal model.</p
When Too Much Is Not Enough: Obsessive-Compulsive Disorder as a Pathology of Stopping, Rather than Starting
Background: In obsessive-compulsive disorder (OCD), individuals feel compelled to repeatedly perform security-related behaviors, even though these behaviours seem excessive and unwarranted to them. The present research investigated two alternative ways of explaining such behavior: (1) a dysfunction of activation—a starting problem—in which the level of excitation in response to stimuli suggesting potential danger is abnormally strong; versus (2) a dysfunction of termination— a stopping problem—in which the satiety-like process for shutting down security-related thoughts and actions is abnormally weak. Method: In two experiments, 70 patients with OCD (57 with washing compulsions, 13 with checking compulsions) and 72 controls were exposed to contamination cues—immersing a hand in wet diapers —and later allowed to wash their hands, first limited to 30 s and then for as long as desired. The intensity of activation of security motivation was measured objectively by change in respiratory sinus arrythmia. Subjective ratings (e.g., contamination) and behavioral measures (e.g., duration of hand washing) were also collected. Results: Compared to controls, OCD patients with washing compulsions did not differ significantly in their levels of initial activation to the threat of contamination; however, they were significantly less able to reduce this activation by engaging in the corrective behavior of hand-washing. Further, the deactivating effect of hand-washing in OCD patients with checkin
- …