106 research outputs found

    Multi-Majors

    Get PDF

    MacArthur Fellow: Exploring Cultural Geography

    Get PDF

    Helping Out

    Get PDF

    Faculty Focus

    Get PDF

    Staff Circle

    Get PDF

    Student Center

    Get PDF

    For the Record

    Get PDF

    Proving Differential Privacy with Shadow Execution

    Full text link
    Recent work on formal verification of differential privacy shows a trend toward usability and expressiveness -- generating a correctness proof of sophisticated algorithm while minimizing the annotation burden on programmers. Sometimes, combining those two requires substantial changes to program logics: one recent paper is able to verify Report Noisy Max automatically, but it involves a complex verification system using customized program logics and verifiers. In this paper, we propose a new proof technique, called shadow execution, and embed it into a language called ShadowDP. ShadowDP uses shadow execution to generate proofs of differential privacy with very few programmer annotations and without relying on customized logics and verifiers. In addition to verifying Report Noisy Max, we show that it can verify a new variant of Sparse Vector that reports the gap between some noisy query answers and the noisy threshold. Moreover, ShadowDP reduces the complexity of verification: for all of the algorithms we have evaluated, type checking and verification in total takes at most 3 seconds, while prior work takes minutes on the same algorithms.Comment: 23 pages, 12 figures, PLDI'1

    Bright Ideas

    Get PDF

    Preserving Statistical Validity in Adaptive Data Analysis

    Full text link
    A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of mm adaptively chosen functions on an unknown distribution given nn random samples. We show that, surprisingly, there is a way to estimate an exponential in nn number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.Comment: Updated related work with recent development
    • …
    corecore