38 research outputs found

    Large Language Model-based System to Provide Immediate Feedback to Students in Flipped Classroom Preparation Learning

    Full text link
    This paper proposes a system that uses large language models to provide immediate feedback to students in flipped classroom preparation learning. This study aimed to solve challenges in the flipped classroom model, such as ensuring that students are emotionally engaged and motivated to learn. Students often have questions about the content of lecture videos in the preparation of flipped classrooms, but it is difficult for teachers to answer them immediately. The proposed system was developed using the ChatGPT API on a video-watching support system for preparation learning that is being used in real practice. Answers from ChatGPT often do not align with the context of the student's question. Therefore, this paper also proposes a method to align the answer with the context. This paper also proposes a method to collect the teacher's answers to the students' questions and use them as additional guides for the students. This paper discusses the design and implementation of the proposed system.Comment: 6 page

    Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Get PDF
    Caffeic acid phenethyl ester (CAPE) is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 ¡mol/kg for 21 days) has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST) and forced swim (FST) tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234)), resulting in an increased pGR(S220/S234) ratio. We also observed negative correlations between pGR(S220)/(S234) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function

    Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Get PDF
    Caffeic acid phenethyl ester (CAPE) is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 mol/kg for 21 days) has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST) and forced swim (FST) tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234)), resulting in an increased pGR(S220/S234) ratio. We also observed negative correlations between pGR(S220)/(S234) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressantlike effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function

    Essential Role of Neuron-Enriched Diacylglycerol Kinase (DGK), DGKΞ² in Neurite Spine Formation, Contributing to Cognitive Function

    Get PDF
    BACKGROUND: Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKbeta. In addition, overexpression of DGKbeta in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKbeta, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKbeta but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that membrane-localized DGKbeta regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory

    TIMP-2 Fusion Protein with Human Serum Albumin Potentiates Anti-Angiogenesis-Mediated Inhibition of Tumor Growth by Suppressing MMP-2 Expression

    Get PDF
    TIMP-2 protein has been intensively studied as a promising anticancer candidate agent, but the in vivo mechanism underlying its anticancer effect has not been clearly elucidated by previous works. In this study, we investigated the mechanism underlying the anti-tumor effects of a TIMP-2 fusion protein conjugated with human serum albumin (HSA/TIMP-2). Systemic administration of HSA/TIMP-2 effectively inhibited tumor growth at a minimum effective dose of 60 mg/kg. The suppressive effect of HSA/TIMP-2 was accompanied by a marked reduction of in vivo vascularization. The anti-angiogenic activity of HSA/TIMP-2 was directly confirmed by CAM assays. In HSA/TIMP-2-treated tumor tissues, MMP-2 expression was profoundly decreased without a change in MT1-MMP expression of PECAM-1-positive cells. MMP-2 mRNA was also decreased by HSA/TIMP-2 treatment of human umbilical vein endothelial cells. Zymographic analysis showed that HSA/TIMP-2 substantially decreased extracellular pro-MMP-2 activity (94–99% reduction) and moderately decreased active MMP-2 activity (10–24% reduction), suggesting MT1-MMP-independent MMP-2 modulation. Furthermore, HSA/TIMP-2 had no effect on in vitro active MMP-2 activity and in vivo MMP-2 activity. These studies show that HSA/TIMP-2 potentiates anti-angiogenic activity by modulating MMP-2 expression, but not MMP-2 activity, to subsequently suppress tumor growth, suggesting an important role for MMP-2 expression rather than MMP-2 activity in anti-angiogenesis

    Solubility of Nitrogen and Equilibrium Of Ti-nitride Forming Reaction in Liquid Fe-Ti Alloys

    Full text link
    corecore