1,833 research outputs found

    Phase Diagram of Lattice-Spin System RbCoBr3_3

    Full text link
    We study the lattice-spin model of RbCoBr3_3 which is proposed by Shirahata and Nakamura, by mean field approximation. This model is an Ising spin system on a distorted triangular lattice. There are two kinds of frustrated variables, that is, the lattice and spin. We obtain a phase diagram of which phase boundary is drawn continuously in a whole region. Intermediate phases that include a partial disordered state appear. The model has the first-order phase transitions in addition to the second-order phase transitions. We find a three-sublattice ferrimagnetic state in the phase diagram. The three-sublattice ferrimagnetic state does not appear when the lattice is not distorted.Comment: 5 pages, 4 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.75 (2006) No.

    Energy end-use technologies for the 21st century

    Get PDF
    The World Energy Council’s recent study examined the potential of energy end-use technologies and of research, development, and demonstration (RD&D) into these technologies on a global scale. Surprises are likely, but nevertheless, current research and development offer a picture of what might happen in the future as new technologies face the competition of the marketplace. Given the breadth of energy end-use technologies and the differences between regions and economic conditions, the study focused on technologies that appear most important from today’s vantage point. Globally, robust research and development followed by demonstrations of new end-use technologies can potentially save at least 110 EJ/year by 2020 and over 300 EJ/year by 2050. If achieved, this translates to worldwide energy savings of as much as 25% by 2020 and over 40% by 2050, over what may be required without these technologies. It is almost certain that no single technology, or even a small set of technologies, will dominate in meeting the needs of the globe in any foreseeable timeframe. Absent a significant joint government–industry effort on end-use technology RD&D, the technologies needed will not be ready for the marketplace in the timeframes required with even the most pessimistic scenarios. Based on previous detailed analyses for the United States, an international expenditure of $4 billion per year seems more than justified. The success of new energy end-use technologies depends on new RD&D investments and policy decisions made today. Governments, in close cooperation with industry, must carefully consider RD&D incentives that can help get technologies from the laboratory or test-bed to market. Any short-term impact areas are likely to benefit from focused RD&D. These include electricity transmission and distribution, distributed electricity production, transportation, the production of paper and pulp, iron and steel, aluminum, cement and chemicals, and information and communication technologies. For long-term impact, significant areas include fuel cells, hydrogen fuel, and integrated multi-task energy systems

    Stent-grafting for a thoracic aortic aneurysm ruptured into the right pleural cavity

    Get PDF
    AbstractEur J Vasc Endovasc Surg 25, 185–187 (2003

    Igneous clasts in the Northwest Africa 801 CR2 chondrite: REE and oxygen isotopic studies.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within Green function formalism

    Full text link
    The thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets (HFM) in an external magnetic field is investigated within a second-order two-time Green function formalism in the wide temperature and field range. A crucial point of the proposed scheme is a proper account of the analytical properties for the approximate transverse commutator Green function obtained as a result of the decoupling procedure. A good quantitative description of the correlation functions, magnetization, susceptibility, and heat capacity of the HFM on a chain, square and triangular lattices is found for both infinite and finite-sized systems. The dependences of the thermodynamic functions of 2D HFM on the cluster size are studied. The obtained results agree well with the corresponding data found by Bethe ansatz, exact diagonalization, high temperature series expansions, and quantum Monte Carlo simulations.Comment: 11 pages, 14 figure
    corecore